0000000000413987

AUTHOR

Maria Francesca Santangelo

0000-0003-0540-1965

Si photomultipliers for bio-sensing applications

In this paper, silicon photomultipliers (SiPM) are proposed as optical detectors for bio sensing. Optical transduction is the most used detection mechanism in many biosensor applications, such as DNA microarray and real-time polymerase chain reaction. The performances of a 25 pixels device used for both applications are studied. The results confirm that the SiPM is more sensitive than the traditionally employed detectors. In fact, it is able to experimentally detect 1 nM and 100 fM of fluorophore concentrations in dried samples and solutions, respectively. We present and discuss in details the detector configuration and its characterization as fluorescence detector for bio sensing.

research product

Continuous Wave fNIRS with Silicon Photomultiplier

This work is focused on the development of a Continuous Wave (CW) NIRS integrated system with multi-wavelength LED sources between 700 and 950 nm and a Silicon Photomultiplier detector (SiPM) developed by STMicroelectronics. The Signal Noise Rate (SNR), measured placing the LEDs and an SiPM in a direct contact with the surface of a plastic phantom mimicking a real human head, results higher than the calculated minimum, required to detect small variation in the HbO2 and HHb concentration, till a source detector separation (SDS) of 6 cm.

research product

CY5 fluorescence measured with silicon photomultipliers

This paper presents an efficient optical biosensor set up for a low-level light detection, using fluorescent dyes and a novel Si-based detector. Fluorescence emitted by a traditional fluorophore, CY5, widely used as optical label in DNA microarrays, was detected using a 25 pixels Silicon photomultiplier (SiPM), a device formed by avalanche diodes operating in Geiger mode, in parallel connections. We measured the fluorescence current in different deposition (fluorophore concentration; solvent; salt concentration) and operation (angle of analysis, optical laser power, device gain) conditions. The characterization of DNA samples labeled with CY5 is also reported to demonstrate the detector pot…

research product