A diamagnetic iron complex and its twisted sister – structural evidence on partial spin state change in a crystalline iron complex
We report here the syntheses of a diamagnetic Fe complex [Fe(HL)2] (1), prepared by reacting a redox non-innocent ligand precursor N,N′-bis(3,5-di-tert-butyl-2-hydroxy-phenyl)-1,2-phenylenediamine (H4L) with FeCl3, and its phenoxazine derivative [Fe(L′)2] (2), which was obtained via intra-ligand cyclisation of the parent complex. Magnetic measurements, accompanied by spectroscopic, structural and computational analyses show that 1 can be viewed as a rather unusual Fe(III) complex with a diamagnetic ground state in the studied temperature range due to a strong antiferromagnetic coupling between the low-spin Fe(III) ion and a radical ligand. For a paramagnetic high-spin Fe(II) complex 2 it wa…
Hackmanite—The Natural Glow-in-the-Dark Material
“Glow-in-the-dark” materials are known to practically everyone who has ever traveled by airplane or cruise ship, since they are commonly used for self-lit emergency exit signs. The green afterglow, persistent luminescence (PeL), is obtained from divalent europium doped to a synthetic strontium aluminate, but there are also some natural minerals capable of afterglow. One such mineral is hackmanite, the afterglow of which has never been thoroughly investigated, even if its synthetic versions can compete with some of the best commercially available synthetic PeL materials. Here we combine experimental and computational data to show that the white PeL of natural hackmanite is generated and cont…
Synthesis of carbon nanotubes on FexOy doped Al2O3-ZrO2 nanopowder
Carbon nanotubes (CNTs) were synthesized on liquid flame sprayed (LFS) powder substrate of iron oxide doped Al2O3-ZrO2. Iron oxide doped Al2O3-ZrO2 nanopowder was produced by injecting the liquid precursor of aluminium-isopropoxide, zirconium-n-propoxide, ferrocene and p-xylene into a high temperature (similar to 3000 K) flame. The precursor solution was atomized by high-velocity H-2 flow and injected into the flame where nanopartides were formed. The collected sample was used as a substrate material for the synthesis of CNTs. The CNTs were formed on the surfaces of the substrate powder by catalyzed decomposition of CH4. The particle morphology, size, phase composition and the nature of CNT…