0000000000415240

AUTHOR

Ulrike Ritzmann

0000-0001-8064-2684

Magnon detection using a ferroic collinear multilayer spin valve

Information transport and processing by pure magnonic spin currents in insulators is a promising alternative to conventional charge-current-driven spintronic devices. The absence of Joule heating and reduced spin wave damping in insulating ferromagnets have been suggested for implementing efficient logic devices. After the successful demonstration of a majority gate based on the superposition of spin waves, further components are required to perform complex logic operations. Here, we report on magnetization orientation-dependent spin current detection signals in collinear magnetic multilayers inspired by the functionality of a conventional spin valve. In Y3Fe5O12|CoO|Co, we find that the de…

research product

Ferroic collinear multilayer magnon spin valve

Information transport and processing by pure magnonic spin currents in insulators is a promising alternative to conventional charge-current driven spintronic devices. The absence of Joule heating as well as the reduced spin wave damping in insulating ferromagnets has been suggested to enable the implementation of efficient logic devices. After the proof of concept for a logic majority gate based on the superposition of spin waves has been successfully demonstrated, further components are required to perform complex logic operations. A key component is a switch that corresponds to a conventional magnetoresistive spin valve. Here, we report on magnetization orientation dependent spin signal d…

research product

Magnetic field control of the spin Seebeck effect

The origin of the suppression of the longitudinal spin Seebeck effect by applied magnetic fields is studied. We perform numerical simulations of the stochastic Landau-Lifshitz-Gilbert equation of motion for an atomistic spin model and calculate the magnon accumulation in linear temperature gradients for different strengths of applied magnetic fields and different length scales of the temperature gradient. We observe a decrease of the magnon accumulation with increasing magnetic field and we reveal that the origin of this effect is a field dependent change of the frequency distribution of the propagating magnons. With increasing field the magnonic spin currents are reduced due to a suppressi…

research product

Determination of the origin of the spin Seebeck effect - bulk vs. interface effects

The observation of the spin Seebeck effect in insulators has meant a breakthrough for spin caloritronics due to the unique ability to generate pure spin currents by thermal excitations in insulating systems without moving charge carriers. Since the recent first observation, the underlying mechanism and the origin of the observed signals have been discussed highly controversially. Here we present a characteristic dependence of the longitudinal spin Seebeck effect amplitude on the thickness of the insulating ferromagnet (YIG). Our measurements show that the observed behavior cannot be explained by any effects originating from the interface, such as magnetic proximity effects in the spin detec…

research product

Length Scale of the Spin Seebeck Effect

We investigate the origin of the spin Seebeck effect in yttrium iron garnet (YIG) samples for film thicknesses from 20 nm to 50  μm at room temperature and 50 K. Our results reveal a characteristic increase of the longitudinal spin Seebeck effect amplitude with the thickness of the insulating ferrimagnetic YIG, which levels off at a critical thickness that increases with decreasing temperature. The observed behavior cannot be explained as an interface effect or by variations of the material parameters. Comparison to numerical simulations of thermal magnonic spin currents yields qualitative agreement for the thickness dependence resulting from the finite magnon propagation length. This allow…

research product

Trochoidal motion and pair generation in skyrmion and antiskyrmion dynamics under spin-orbit torques

Magnetic skyrmions are swirling magnetic spin structures that could be used to build next-generation memory and logic devices. They can be characterized by a topological charge that describes how the spin winds around the core. The dynamics of skyrmions and antiskyrmions, which have opposite topological charges, are typically described by assuming a rigid core. However, this reduces the set of variables that describe skyrmion motion. Here we theoretically explore the dynamics of skyrmions and antiskyrmions in ultrathin ferromagnetic films and show that current-induced spin–orbit torques can lead to trochoidal motion and skyrmion–antiskyrmion pair generation, which occurs only for either the…

research product

Thermally induced magnon accumulation in two-sublattice magnets

We present a temperature-dependent study of the thermal excitation of a magnon accumulation in two-sublattice magnetic materials. Using atomistic spin model simulations, we study the local magnetization profiles sublattice-wise in the vicinity of a temperature step in antiferromagnets, as well as in ferrimagnets. It is shown that the strength of the magnon accumulation in these systems scales with the derivative of the magnetization with respect to the temperature. These results give an insight into the complex temperature dependence of the magnon accumulation by making a direct link to the macroscopic behavior of the magnetization.

research product

Spin transport across antiferromagnets induced by the spin Seebeck effect

For prospective spintronics devices based on the propagation of pure spin currents, antiferromagnets are an interesting class of materials that potentially entail a number of advantages as compared to ferromagnets. Here, we present a detailed theoretical study of magnonic spin current transport in ferromagnetic-antiferromagnetic multilayers by using atomistic spin dynamics simulations. The relevant length scales of magnonic spin transport in antiferromagnets are determined. We demonstrate the transfer of angular momentum from a ferromagnet into an antiferromagnet due to the excitation of only one magnon branch in the antiferromagnet. As an experimental system, we ascertain the transport acr…

research product