6533b82afe1ef96bd128c36b
RESEARCH PRODUCT
Magnetic field control of the spin Seebeck effect
Ulrich NowakAndreas KehlbergerEr-jia GuoMathias KläuiUlrike RitzmannDenise Hinzkesubject
PhysicsCondensed Matter - Materials ScienceField (physics)Condensed matter physicsSpin polarizationCondensed Matter - Mesoscale and Nanoscale PhysicsMagnonmagnetic field spin Seebeck effectMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsMagnetic fieldCondensed Matter::Materials ScienceSpin wavepacs:75.40.MgMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spin Hall effectSpin modelpacs:75.76.+jddc:530Condensed Matter::Strongly Correlated Electronspacs:75.30.DsSpin-½description
The origin of the suppression of the longitudinal spin Seebeck effect by applied magnetic fields is studied. We perform numerical simulations of the stochastic Landau-Lifshitz-Gilbert equation of motion for an atomistic spin model and calculate the magnon accumulation in linear temperature gradients for different strengths of applied magnetic fields and different length scales of the temperature gradient. We observe a decrease of the magnon accumulation with increasing magnetic field and we reveal that the origin of this effect is a field dependent change of the frequency distribution of the propagating magnons. With increasing field the magnonic spin currents are reduced due to a suppression of parts of the frequency spectrum. By comparison with measurements of the magnetic field dependent longitudinal spin Seebeck effect in YIG thin films with various thicknesses, we find qualitative agreement between our model and the experimental data, demonstrating the importance of this effect for experimental systems. published
year | journal | country | edition | language |
---|---|---|---|---|
2015-06-17 |