0000000000415241

AUTHOR

Tomohiko Niizeki

Magnon detection using a ferroic collinear multilayer spin valve

Information transport and processing by pure magnonic spin currents in insulators is a promising alternative to conventional charge-current-driven spintronic devices. The absence of Joule heating and reduced spin wave damping in insulating ferromagnets have been suggested for implementing efficient logic devices. After the successful demonstration of a majority gate based on the superposition of spin waves, further components are required to perform complex logic operations. Here, we report on magnetization orientation-dependent spin current detection signals in collinear magnetic multilayers inspired by the functionality of a conventional spin valve. In Y3Fe5O12|CoO|Co, we find that the de…

research product

Ferroic collinear multilayer magnon spin valve

Information transport and processing by pure magnonic spin currents in insulators is a promising alternative to conventional charge-current driven spintronic devices. The absence of Joule heating as well as the reduced spin wave damping in insulating ferromagnets has been suggested to enable the implementation of efficient logic devices. After the proof of concept for a logic majority gate based on the superposition of spin waves has been successfully demonstrated, further components are required to perform complex logic operations. A key component is a switch that corresponds to a conventional magnetoresistive spin valve. Here, we report on magnetization orientation dependent spin signal d…

research product

Spin transport in multilayer systems with fully epitaxial NiO thin films

We report the generation and transport of thermal spin currents in fully epitaxial $\ensuremath{\gamma}\text{\ensuremath{-}}\mathrm{F}{\mathrm{e}}_{2}{\mathrm{O}}_{3}/\mathrm{NiO}(001)/\mathrm{Pt}$ and $\mathrm{F}{\mathrm{e}}_{3}{\mathrm{O}}_{4}/\mathrm{NiO}(001)/\mathrm{Pt}$ trilayers. A thermal gradient, perpendicular to the plane of the sample, generates a magnonic spin current in the ferrimagnetic maghemite $(\ensuremath{\gamma}\text{\ensuremath{-}}\mathrm{F}{\mathrm{e}}_{2}{\mathrm{O}}_{3})$ and magnetite $(\mathrm{F}{\mathrm{e}}_{3}{\mathrm{O}}_{4})$ thin films by means of the spin Seebeck effect. The spin current propagates across the epitaxial, antiferromagnetic insulating NiO layer…

research product

Full angular dependence of the spin Hall and ordinary magnetoresistance in epitaxial antiferromagnetic NiO(001)/Pt thin films

We report the observation of the three-dimensional angular dependence of the spin Hall magnetoresistance (SMR) in a bilayer of the epitaxial antiferromagnetic insulator NiO(001) and the heavy metal Pt, without any ferromagnetic element. The detected angular-dependent longitudinal and transverse magnetoresistances are measured by rotating the sample in magnetic fields up to 11 T, along three orthogonal planes (xy-, yz- and xz-rotation planes, where the z-axis is orthogonal to the sample plane). The total magnetoresistance has contributions arising from both the SMR and ordinary magnetoresistance. The onset of the SMR signal occurs between 1 and 3 T and no saturation is visible up to 11 T. Th…

research product

Antiferromagnetic NiO thickness dependent sign of the spin Hall magnetoresistance in γ-Fe2O3/NiO/Pt epitaxial stacks

We study the spin Hall magnetoresistance (SMR) in epitaxial γ–Fe2O3/NiO(001)/Pt stacks, as a function of temperature and thickness of the antiferromagnetic insulating NiO layer. Upon increasing the thickness of NiO from 0 nm to 10 nm, we detect a sign change of the SMR in the temperature range between 10 K and 280 K. This temperature dependence of the SMR in our stacks is different compared to that of previously studied yttrium iron garnet/NiO/Pt, as we do not find any peak or sign change as a function of temperature. We explain our data by a combination of spin current reflection from both the NiO/Pt and γ-Fe2O3/NiO interfaces and the thickness-dependent exchange coupling mode between the …

research product

Antiferromagnetic NiO thickness dependent sign of the spin Hall magnetoresistance in γ-Fe 2 O 3 /NiO/Pt epitaxial stacks

We study the spin Hall magnetoresistance (SMR) in epitaxial γ–Fe2O3/NiO(001)/Pt stacks, as a function of temperature and thickness of the antiferromagnetic insulating NiO layer. Upon increasing the thickness of NiO from 0 nm to 10 nm, we detect a sign change of the SMR in the temperature range between 10 K and 280 K. This temperature dependence of the SMR in our stacks is different compared to that of previously studied yttrium iron garnet/NiO/Pt, as we do not find any peak or sign change as a function of temperature. We explain our data by a combination of spin current reflection from both the NiO/Pt and γ-Fe2O3/NiO interfaces and the thickness-dependent exchange coupling mode between the …

research product