0000000000416973

AUTHOR

A. V. Gramolin

showing 3 related works from this author

Photoreactions with tensor-polarized deuterium target at VEPP–3

2011

We give an overview of the activity in studying photoprocesses on a tensor-polarized deuterium target, which is carried out at the VEPP–3 electron storage ring. Recent experimental results on tensor asymmetries in two-body deuteron photodisintegration at the photon energy up to 500 MeV, and in coherent pion photoproduction on deuteron are presented. Plans to upgrade the facility and future experiments are discussed. Further progress is connected with the installation of a tagging system for almost-real photons. This would allow us to extend the measurements of polarization observables in photonuclear reactions on deuteron up to a photon energy of 1.5 GeV and permit to perform double polariz…

PhysicsHistoryPhotonNuclear TheoryPhoton energyComputer Science ApplicationsEducationNuclear physicsUpgradePionDeuteriumPhotodisintegrationPhysics::Accelerator PhysicsPhoton beamsHigh Energy Physics::ExperimentTensorNuclear ExperimentJournal of Physics: Conference Series
researchProduct

Search for Axionlike Dark Matter Using Solid-State Nuclear Magnetic Resonance.

2021

Physical review letters 126(14), 141802 (2021). doi:10.1103/PhysRevLett.126.141802

Quantum chromodynamicsPhysicsPhysics - Instrumentation and DetectorsNeutron electric dipole momentRelaxation (NMR)FOS: Physical sciencesGeneral Physics and AstronomyInstrumentation and Detectors (physics.ins-det)Coupling (probability)01 natural sciences530High Energy Physics - ExperimentCondensed Matter - Other Condensed MatterHigh Energy Physics - Experiment (hep-ex)Electric dipole moment0103 physical sciencesddc:530Atomic physics010306 general physicsSpin (physics)AxionExcitationOther Condensed Matter (cond-mat.other)Physical review letters
researchProduct

Quantum sensitivity limits of nuclear magnetic resonance experiments searching for new fundamental physics

2021

Nuclear magnetic resonance is a promising experimental approach to search for ultra-light axion-like dark matter. Searches such as the cosmic axion spin-precession experiments (CASPEr) are ultimately limited by quantum-mechanical noise sources, in particular, spin-projection noise. We discuss how such fundamental limits can potentially be reached. We consider a circuit model of a magnetic resonance experiment and quantify three noise sources: spin-projection noise, thermal noise, and amplifier noise. Calculation of the total noise spectrum takes into account the modification of the circuit impedance by the presence of nuclear spins, as well as the circuit back-action on the spin ensemble. S…

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Materials Science (miscellaneous)Dark matterFOS: Physical sciences01 natural sciencesNoise (electronics)010305 fluids & plasmasNuclear magnetic resonanceHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530Sensitivity (control systems)Electrical and Electronic Engineering010306 general physicsAxionQuantumElectrical impedanceSpin-½PhysicsQuantum PhysicsSpinsInstrumentation and Detectors (physics.ins-det)Atomic and Molecular Physics and OpticsCondensed Matter - Other Condensed MatterHigh Energy Physics - PhenomenologyQuantum Physics (quant-ph)Other Condensed Matter (cond-mat.other)
researchProduct