0000000000416973
AUTHOR
A. V. Gramolin
Photoreactions with tensor-polarized deuterium target at VEPP–3
We give an overview of the activity in studying photoprocesses on a tensor-polarized deuterium target, which is carried out at the VEPP–3 electron storage ring. Recent experimental results on tensor asymmetries in two-body deuteron photodisintegration at the photon energy up to 500 MeV, and in coherent pion photoproduction on deuteron are presented. Plans to upgrade the facility and future experiments are discussed. Further progress is connected with the installation of a tagging system for almost-real photons. This would allow us to extend the measurements of polarization observables in photonuclear reactions on deuteron up to a photon energy of 1.5 GeV and permit to perform double polariz…
Search for Axionlike Dark Matter Using Solid-State Nuclear Magnetic Resonance.
Physical review letters 126(14), 141802 (2021). doi:10.1103/PhysRevLett.126.141802
Quantum sensitivity limits of nuclear magnetic resonance experiments searching for new fundamental physics
Nuclear magnetic resonance is a promising experimental approach to search for ultra-light axion-like dark matter. Searches such as the cosmic axion spin-precession experiments (CASPEr) are ultimately limited by quantum-mechanical noise sources, in particular, spin-projection noise. We discuss how such fundamental limits can potentially be reached. We consider a circuit model of a magnetic resonance experiment and quantify three noise sources: spin-projection noise, thermal noise, and amplifier noise. Calculation of the total noise spectrum takes into account the modification of the circuit impedance by the presence of nuclear spins, as well as the circuit back-action on the spin ensemble. S…