6533b831fe1ef96bd1299968

RESEARCH PRODUCT

Quantum sensitivity limits of nuclear magnetic resonance experiments searching for new fundamental physics

Nataniel L. FigueroaJohn W. BlanchardHendrik BekkerDmitry BudkerDerek F. Jackson KimballGary P. CentersDeniz AybasAlexander O. SushkovA. V. GramolinArne Wickenbrock

subject

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Materials Science (miscellaneous)Dark matterFOS: Physical sciences01 natural sciencesNoise (electronics)010305 fluids & plasmasNuclear magnetic resonanceHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530Sensitivity (control systems)Electrical and Electronic Engineering010306 general physicsAxionQuantumElectrical impedanceSpin-½PhysicsQuantum PhysicsSpinsInstrumentation and Detectors (physics.ins-det)Atomic and Molecular Physics and OpticsCondensed Matter - Other Condensed MatterHigh Energy Physics - PhenomenologyQuantum Physics (quant-ph)Other Condensed Matter (cond-mat.other)

description

Nuclear magnetic resonance is a promising experimental approach to search for ultra-light axion-like dark matter. Searches such as the cosmic axion spin-precession experiments (CASPEr) are ultimately limited by quantum-mechanical noise sources, in particular, spin-projection noise. We discuss how such fundamental limits can potentially be reached. We consider a circuit model of a magnetic resonance experiment and quantify three noise sources: spin-projection noise, thermal noise, and amplifier noise. Calculation of the total noise spectrum takes into account the modification of the circuit impedance by the presence of nuclear spins, as well as the circuit back-action on the spin ensemble. Suppression of the circuit back-action is especially important in order for the spin-projection noise limits of searches for axion-like dark matter to reach the quantum chromodynamic axion sensitivity.

https://dx.doi.org/10.48550/arxiv.2103.06284