0000000000420755

AUTHOR

Alf Lamprecht

Artificial neural network based particle size prediction of polymeric nanoparticles.

Particle size of nanoparticles and the respective polydispersity are key factors influencing their biopharmaceutical behavior in a large variety of therapeutic applications. Predicting these attributes would skip many preliminary studies usually required to optimize formulations. The aim was to build a mathematical model capable of predicting the particle size of polymeric nanoparticles produced by a pharmaceutical polymer of choice. Polymer properties controlling the particle size were identified as molecular weight, hydrophobicity and surface activity, and were quantified by measuring polymer viscosity, contact angle and interfacial tension, respectively. A model was built using artificia…

research product

Spray freeze drying as an alternative technique for lyophilization of polymeric and lipid-based nanoparticles.

The use of nanoparticles for drug delivery is still restricted by their limited stability when stored in an aqueous medium. Freeze drying is the standard method for long-term storage of colloidal nanoparticles; however the method needs to be elaborated for each formulation. Spray freeze drying (SFD) is proposed here as a promising alternative for lyophilizing colloidal nanoparticles. Different types of polymeric and lipid nanoparticles were prepared and characterized. Afterwards, samples were spray freeze dried by spraying into a column of cold air with a constant concentration of different cryoprotectants, and the frozen spherules were collected for further freeze drying. Similar samples w…

research product

Nanoparticle formulations as recrystallization inhibitors in transdermal patches

Abstract Drug crystallization in transdermal patches is still a major challenge, confronting the formulation development of topical drug delivery systems. Encapsulation of drugs into nanoparticles is proposed here as a promising tool for regulating drug crystallization in transdermal patches. The degree of recrystallization and transdermal permeation of ibuprofen and hydrocortisone loaded in polymeric and lipid nanoparticles from matrix-type transdermal patches were investigated. Ethyl cellulose (EC4), poly (lactide-co-glycolic acid) (PLGA) and polycaprolactone (PCL) were employed for polymeric nanoparticle preparations; while medium chain triglyceride (MCT) and witepsol were used for the p…

research product

Impact of excipient choice on the aerodynamic performance of inhalable spray-freeze-dried powders

Abstract Spray-freeze-drying (SFD) is a process in which a solution is dispersed into a freezing medium and dried by sublimation, resulting in lyophilized powders with spherical particles. This study aims at screening and evaluating the impact of the excipient choice and spray solution characteristics in SFD on the physico-chemical characteristics of lyospheres and rate their suitability for producing pulmonary applicable powders using a novel SFD method. A monodisperse droplet-stream was injected into a vortex of cold gas for the production of inhalable, uniform spherical lyophilisates with a narrow particle size distribution. Model solutions containing graded contents (0.3%, 1.0%, and 3.0…

research product

The effect of nanoparticle size and NLS density on nuclear targeting in cancer and normal cells; impaired nuclear import and aberrant nanoparticle intracellular trafficking in glioma

The cell nucleus is an interesting target in many diseases with particular interest in cancer. Previously, nuclear targeted small and large chitosan nanoparticles (S-NPs≈25nm, and L-NPs≈150nm respectively), modified with low, intermediate and high densities of NLS (L-NLS, I-NLS and H-NLS) were developed and assessed in L929 fibroblasts. However, to evade apoptosis and stimulate tumor growth cancer cells are capable of manipulating the nuclear-cytoplasmic transport on many levels, making NPs that are capable of nuclear targeting in normal cells incapable of doing so in cancer. For such reason, here, the nuclear delivery efficiency of S-NPs and L-NPs was assessed as a function of their NLS de…

research product

An ex-vivo model for transsynovial drug permeation of intraarticular injectables in naive and arthritic synovium

Abstract Estimation of joint residence time of a drug is a key requirement for rational development of intraarticular therapeutics. There is a great need for a predictive model to reduce the high number of animal experiments in early stage development. Here, a Franz-cell based porcine ex-vivo permeation model is proposed, and transsynovial permeation of fluorescently-labeled dextrans in the range of potential drug candidates (10–150 kDa), as well as a small molecule (fluorescein sodium) and charged dextran derivates, have been determined. In addition, a lipopolysaccharide (LPS) -induced synovitis model was assessed for inflammatory biomarker levels and its effect on permeation of the solute…

research product

Process parameters of microsphere preparation based on propylene carbonate emulsion-precursors

This study aimed for a detailed understanding of the impact of different process parameters involved during celecoxib-loaded microsphere preparation based on propylene carbonate emulsion-precursors. Microspheres were prepared by a modified emulsification-solvent extraction method. Performed investigations included polymer solubility and viscosity, microsphere size, morphology and stability, propylene carbonate content as well as celecoxib solid state, content and release. Rough-walled round microspheres with sizes between 21 µm and 122 µm and an internal sponge-like structure filled with residual propylene carbonate (content between 1.9 ± 0.1% and 6.7 ± 0.5% w/w) were obtained. Encapsulatio…

research product

Safety assessment of nanoparticles for drug delivery by means of classic in vitro assays and beyond.

Nanoparticles (NPs) are particularly promising tools for drug delivery and targeting, but to date, only a relatively small number of nanoscale drug delivery systems have been officially approved for drug therapy. Therapeutic NPs are designed for human use and consequently have to withstand critical toxicological analysis, which plays a pivotal role in the decision on the future practical realization of the respective drug-delivery concepts. Nanotoxicology is still a maturing discipline that often lacks profound analysis of non-acute, sub-lethal effects. Areas covered: In this review, a representative selection of current in vitro assays for cell culture-based assessment of nanotoxicity is d…

research product

Process parameters of microsphere preparation based on propylene carbonate emulsion-precursors.

This study aimed for a detailed understanding of the impact of different process parameters involved during celecoxib-loaded microsphere preparation based on propylene carbonate emulsion-precursors.Microspheres were prepared by a modified emulsification-solvent extraction method. Performed investigations included polymer solubility and viscosity, microsphere size, morphology and stability, propylene carbonate content as well as celecoxib solid state, content and release.Rough-walled round microspheres with sizes between 21 µm and 122 µm and an internal sponge-like structure filled with residual propylene carbonate (content between 1.9 ± 0.1% and 6.7 ± 0.5% w/w) were obtained. Encapsulation …

research product

Microparticle preparation by a propylene carbonate emulsification-extraction method

Abstract The use of various harmful organic solvents for microparticle formulations is still widespread. Here, an alternative low toxicity solvent (propylene carbonate; PC) is proposed for the preparation of poly(lactic-co-glycolic-acid) (PLGA) microparticles. Based on the classical emulsification-solvent extraction methodology, the use of PC offers the unique advantage of an additional solvent extraction step using hydrolytic solvent cleavage during microparticle preparation. Spherical, rough-surfaced microparticles were obtained with a volume median diameter range from 20 to 60 µm. The residual PC content has been identified to be the major factor for the solidification hindrance, leading…

research product

Jet-vortex spray freeze drying for the production of inhalable lyophilisate powders

Abstract Spray-freeze-dried powders were suggested for nasal, epidermal (needle-free injection) or pulmonary application of proteins, peptides or nucleic acids. In spray-freeze-drying processes an aqueous solution is atomized into a refrigerant medium and subsequently dried by sublimation. Droplet-stream generators produce a fast stream of monodisperse droplets, where droplets are subject to collisions and therefore the initial monodispersity is lost and droplets increase in diameter, which reduces their suitability for pulmonary application. In jet-vortex-freezing, a droplet-stream is injected into a vortex of cold process gas to prevent droplet collisions. Both the injection position of t…

research product

Enhanced Skin Permeation of Estradiol by Dimethyl Sulfoxide Containing Transdermal Patches.

Dimethyl sulfoxide is a well-known and widely used dermal penetration enhancer. Its incorporation in transdermal patches would be highly desirable

research product

Spray Freeze Dried Lyospheres® for Nasal Administration of Insulin

Pharmacologically active macromolecules, such as peptides, are still a major challenge in terms of designing a delivery system for their transport across absorption barriers and at the same time provide sufficiently high long-term stability. Spray freeze dried (SFD) lyospheres® are proposed here as an alternative for the preparation of fast dissolving porous particles for nasal administration of insulin. Insulin solutions containing mannitol and polyvinylpyrrolidone complemented with permeation enhancing excipients (sodium taurocholate or cyclodextrins) were sprayed into a cooled spray tower, followed by vacuum freeze drying. Final porous particles were highly spherical and mean diameters r…

research product

Hyaluronic Acid Increases Anti-Inflammatory Efficacy of Rectal 5-Amino Salicylic Acid Administration in a Murine Colitis Model

5-amino salicylic acid (5-ASA) is a standard therapy for the treatment of mild to moderate forms of inflammatory bowel diseases (IBD) whereas more severe forms involve the use of steroids and immunosuppressive drugs. Hyaluronic acid (HA) is a naturally occurring non-sulfated glycosaminoglycan that has shown epithelium protective effects in experimental colitis recently. In this study, both 5-ASA (30 mg/kg) and HA (15 mg/kg or 30 mg/kg) were administered rectally and investigated for their potential complementary therapeutic effects in moderate or severe murine colitis models. Intrarectal treatment of moderate and severe colitis with 5-ASA alone or HA alone at a dose of 30 mg/kg led to a sig…

research product

Polymeric matrix hydrophobicity governs saponin packing-density on nanoparticle surface and the subsequent biological interactions.

Abstract This study investigated the loading behavior of Quillaja saponin as a model surface-active cargo on (NP) nanoparticles prepared with various hydrophobic polymers and using different organic solvents through emulsification/solvent evaporation, and the impact of NP surface hydrophobicity upon the cytotoxic and hemolytic properties of the loaded entity. A superficial monolayered arrangement of saponins on NP was established (R2 > 0.9) for all NP, as the saponin loading values complied with the Langmuir adsorption isotherm over the entire concentration range. Next, based on the measurement of interfacial tension between formulation phases, and the subsequent use of Gibb’s adsorption is…

research product

Predictability of drug encapsulation and release from propylene carbonate/PLGA microparticles.

Abstract Key parameters for microparticle-based parenteral depot formulation development are entrapment efficiency and sustained drug release, which both depend on the intermolecular affinity of the components. Here, partial solubility parameters were evaluated as descriptors for 21 drug substances and 3 polymers in propylene carbonate (PC). Out of these 21 drug substances, eight BCS class II substances (celecoxib, clotrimazole, erythromycin, ibuprofen, indomethacin, itraconazole, lopinavir and ritonavir) were encapsulated using PLGA (Poly(DL-lactide-co-glycolide)) as polymer matrix and PC as a polar aprotic solvent in order to assign microparticle properties to potential affinity-related i…

research product