0000000000421466
AUTHOR
E. Peltomaa
Tracing the fate of microplastic carbon in the aquatic food web by compound-specific isotope analysis
Increasing abundance of microplastics (MP) in marine and freshwaters is currently one of the greatest environmental concerns. Since plastics are fairly resistant to chemical decomposition, breakdown and reutilization of MP carbon complexes requires microbial activity. Currently, only a few microbial isolates have been shown to degrade MPs, and direct measurements of the fate of the MP carbon are still lacking. We used compound-specific isotope analysis to track the fate of fully labelled 13C-polyethylene (PE) MP carbon across the aquatic microbial-animal interface. Isotopic values of respired CO2 and membrane lipids showed that MP carbon was partly mineralized and partly used for cell growt…
Phytoplankton group identification with chemotaxonomic biomarkers: In combination they do better
Chemotaxonomic biomarkers are needed to monitor and evaluate the nutritional quality of phytoplankton communities. The biomolecules produced by different phytoplankton species do not always follow genetic phylogeny. Therefore, we analyzed fatty acids, sterols, and carotenoids from 57 freshwater phytoplankton strains to evaluate the usability of these biomolecules as chemotaxonomic biomarkers. We found 29 fatty acids, 34 sterols, and 26 carotenoids in our samples. The strains were grouped into cryptomonads, cyanobacteria, diatoms, dinoflagellates, golden algae, green algae, and raphidophytes, and the phytoplankton group explained 61%, 54%, and 89% of the variability of fatty acids, sterols, …