0000000000425376

AUTHOR

Salla Ruskamo

showing 8 related works from this author

Structures, interactions and packing of filamin domains

2011

actin-binding domainscrystal structuresintegriinitmigfiliiniaktiinifilamiinidomeenitintegrinsfilamiinitimmunoglobulin-like domainsmigfilinkiderakenteet
researchProduct

Structure of the human filamin A actin-binding domain.

2009

Filamin A (FLNa) is a large dimeric protein that binds to actin filaments via its actin-binding domain (ABD). The crystal structure of this domain was solved at 3.2 A resolution. The domain adopts a closed conformation typical of other ABDs, but also forms a dimer both in crystallization conditions and in solution. The structure shows the localization of the residues mutated in patients with periventricular nodular heterotopia or otopalatodigital syndrome. Structural analysis predicts that mutations in both types of disorder may affect actin binding.

Models Molecularanimal structuresDimerFilaminsmacromolecular substancesFilaminCalponin homology domainCrystallography X-Raychemistry.chemical_compoundContractile ProteinsStructural BiologyFLNAHumansProtein Interaction Domains and MotifsActin-binding proteinProtein Structure QuaternaryActinbiologyMicrofilament ProteinsGeneral MedicineActinschemistryStructural Homology ProteinDomain (ring theory)Mutationbiology.proteinBiophysicsBinding domainProtein BindingActa crystallographica. Section D, Biological crystallography
researchProduct

The C-terminal rod 2 fragment of filamin A forms a compact structure that can be extended

2012

Filamins are large proteins that cross-link actin filaments and connect to other cellular components. The C-terminal rod 2 region of FLNa (filamin A) mediates dimerization and interacts with several transmembrane receptors and intracellular signalling adaptors. SAXS (small-angle X-ray scattering) experiments were used to make a model of a six immunoglobulin-like domain fragment of the FLNa rod 2 (domains 16–21). This fragment had a surprising three-branched structural arrangement, where each branch was made of a tightly packed two-domain pair. Peptides derived from transmembrane receptors and intracellular signalling proteins induced a more open structure of the six domain fragment. Mutagen…

Models Moleculargenetics [Receptors Dopamine D3]metabolism [Recombinant Proteins]Protein Conformationgenetics [Antigens CD18]chemistry [Recombinant Proteins]Plasma protein bindingCrystallography X-RayLigandsFilaminmetabolism [Antigens CD18]metabolism [Cytoskeletal Proteins]BiochemistryfilaminsContractile ProteinsProtein structuremetabolism [Peptide Fragments]FLNAchemistry [Antigens CD18]genetics [Cell Adhesion Molecules]Small-angle X-ray scatteringMicrofilament Proteinsgenetics [Contractile Proteins]Recombinant Proteinschemistry [Receptors Dopamine D3]FBLIM1 protein humanddc:540Domain (ring theory)DimerizationProtein Bindingchemistry [Contractile Proteins]FilaminsAntigens CD18metabolism [Cell Adhesion Molecules]BiologyScattering Small Anglemetabolism [Receptors Dopamine D3]Humanschemistry [Microfilament Proteins]Protein Interaction Domains and Motifsmetabolism [Mutant Proteins]DRD3 protein humanMolecular Biologymetabolism [Contractile Proteins]Actingenetics [Cytoskeletal Proteins]Cryoelectron MicroscopyMutagenesista1182Receptors Dopamine D3metabolism [Microfilament Proteins]Cell Biologychemistry [Cell Adhesion Molecules]genetics [Peptide Fragments]Peptide FragmentsCytoskeletal ProteinsCrystallographychemistry [Mutant Proteins]chemistry [Peptide Fragments]CD18 AntigensBiophysicschemistry [Cytoskeletal Proteins]Mutant Proteinsgenetics [Microfilament Proteins]Cell Adhesion MoleculesBiochemical Journal
researchProduct

Assembly of a Filamin Four-domain Fragment and the Influence of Splicing Variant-1 on the Structure

2011

Filamins are scaffold proteins that bind to various proteins, including the actin cytoskeleton, integrin adhesion receptors, and adaptor proteins such as migfilin. Alternative splicing of filamin, largely constructed from 24 Ig-like domains, is thought to have a role in regulating its interactions with other proteins. The filamin A splice variant-1 (FLNa var-1) lacks 41 amino acids, including the last β-strand of domain 19, FLNa(19), and the first β-strand of FLNa(20) that was previously shown to mask a key binding site on FLNa(21). Here, we present a structural characterization of domains 18-21, FLNa(18-21), in the FLNa var-1 as well as its nonspliced counterpart. A model of nonspliced FLN…

Models MolecularFilaminsProtein domainBiologyFilaminBiochemistryProtein Structure SecondaryStructure-Activity RelationshipContractile ProteinsProtein structureHumansFLNANuclear Magnetic Resonance BiomolecularMolecular BiologyMicrofilament ProteinsAlternative splicingta1182Signal transducing adaptor proteinCell BiologyActin cytoskeletonMolecular biologyProtein Structure TertiaryCell biologyAlternative SplicingProtein Structure and FoldingRNA splicingJournal of Biological Chemistry
researchProduct

Atomic Structures of Two Novel Immunoglobulin-like Domain Pairs in the Actin Cross-linking Protein Filamin

2009

Filamins are actin filament cross-linking proteins composed of an N-terminal actin-binding domain and 24 immunoglobulin-like domains (IgFLNs). Filamins interact with numerous proteins, including the cytoplasmic domains of plasma membrane signaling and cell adhesion receptors. Thereby filamins mechanically and functionally link the cell membrane to the cytoskeleton. Most of the interactions have been mapped to the C-terminal IgFLNs 16–24. Similarly, as with the previously known compact domain pair of IgFLNa20–21, the two-domain fragments IgFLNa16–17 and IgFLNa18–19 were more compact in small angle x-ray scattering analysis than would be expected for two independent domains. Solution state NM…

EGF-like domainFilaminsMolecular Sequence DataMolecular ConformationImmunoglobulinsmacromolecular substancesPlasma protein bindingBiologyFilaminModels BiologicalBiochemistryCell membraneHAMP domain03 medical and health sciencesContractile Proteins0302 clinical medicineddc:570Cell AdhesionmedicineHumansScattering RadiationAmino Acid SequenceCytoskeletonCell adhesionMolecular BiologyCytoskeletonActin030304 developmental biology0303 health sciencesMicrofilament ProteinsCell BiologyActinsRecombinant ProteinsProtein Structure Tertiary3. Good healthCell biologyCross-Linking Reagentsmedicine.anatomical_structureProtein Structure and Folding030217 neurology & neurosurgeryProtein BindingJournal of Biological Chemistry
researchProduct

A novel structural unit in the N-terminal region of filamins.

2014

Immunoglobulin-like (Ig) domains are a widely expanded superfamily that act as interaction motifs or as structural spacers in multidomain proteins. Vertebrate filamins (FLNs), which are multifunctional actin-binding proteins, consist of 24 Ig domains. We have recently discovered that in the C-terminal rod 2 region of FLN, Ig domains interact with each other forming functional domain pairs, where the interaction with signaling and transmembrane proteins is mechanically regulated by weak actomyosin contraction forces. Here, we investigated if there are similar inter-domain interactions around domain 4 in the N-terminal rod 1 region of FLN. Protein crystal structures revealed a new type of dom…

Models MolecularEGF-like domainProtein ConformationFilaminsProtein domainMolecular Sequence DataBeta sheetmacromolecular substancesBiologyCrystallography X-RayBiochemistryProtein–protein interactionHAMP domainProtein structureHumansAmino Acid SequenceMolecular BiologyNuclear Magnetic Resonance Biomolecularta1182Cell BiologyProtein Structure TertiaryCrystallographyStructural biologyProtein Structure and FoldingBiophysicsBinding domainProtein BindingThe Journal of biological chemistry
researchProduct

Structural basis of the migfilin-filamin interaction and competition with integrin beta tails.

2008

A link between sites of cell adhesion and the cytoskeleton is essential for regulation of cell shape, motility, and signaling. Migfilin is a recently identified adaptor protein that localizes at cell-cell and cell-extracellular matrix adhesion sites, where it is thought to provide a link to the cytoskeleton by interacting with the actin cross-linking protein filamin. Here we have used x-ray crystallography, NMR spectroscopy, and protein-protein interaction studies to investigate the molecular basis of migfilin binding to filamin. We report that the N-terminal portion of migfilin can bind all three human filamins (FLNa, -b, or -c) and that there are multiple migfilin-binding sites in FLNa. H…

Models MolecularIntegrin beta ChainsMagnetic Resonance SpectroscopyFilaminsIntegrinMolecular ConformationPlasma protein bindingmacromolecular substancesBiologyFilaminLigandsBiochemistryMiceContractile ProteinsFLNAAnimalsHumansCytoskeletonCell adhesionMolecular BiologyActinCytoskeletonDose-Response Relationship DrugMicrofilament ProteinsMechanisms of Signal TransductionSignal transducing adaptor proteinCell BiologyCell biologyCytoskeletal Proteinsbiology.proteinNIH 3T3 CellsCell Adhesion MoleculesProtein BindingThe Journal of biological chemistry
researchProduct

Ciona intestinalis integriinin α2I-domeenin geenin kokoaminen ja proteiinin tuottaminen

2006

integriinitgeenitproteiinitCiona intestinalis
researchProduct