0000000000426034

AUTHOR

Yuri Gerelli

showing 5 related works from this author

Lipid multilayered particles: the role of chitosan on structure and morphology

2010

Multilayered nanovectors made up from a controlled binary lipid mixture (POPC and DMPS) and trimethyl chitosan (TMC) have been prepared and characterized by light- and small angle neutron scattering. The morphology and the multilayer structure of the particle outer shell has been described in detail. By varying the amount of TMC in the starting solution it is possible to tune the overall surface particle charge as well as its multilamellarity. In this way the drug loading/release properties of the particles can be controlled. Therefore the use of controlled POPC/DMPS mixtures can be a valid alternative to commercial lecithin to obtain nanovectors with specific release properties.

researchProduct

IN13 Backscattering Spectrometer at ILL: Looking for Motions in Biological Macromolecules and Organisms

2008

In 1998, three partner groups (the French institutions Institut de Biologie Structurale and the Leon Brillouin Laboratory and the Italian Istituto Nazionale per la Fisica della Materia, now merged with the Consiglio Nazionale delle Ricerche, INFM-CNR) applied to operate the thermal backscattering spectrometer IN13, at the Institut Laue Langevin, as a French-Italian Collaborative Research Group (CRG). The plan was to have access to a dedicated spectrometer in order to explore how far neutron scattering could contribute to the understanding of dynamics in biological macromolecules: how “flexible” must be a biological object to perform its function?

PhysicsNuclear and High Energy PhysicsSpectrometerbusiness.industryneutron scattering02 engineering and technologytechnique010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesAtomic and Molecular Physics and Optics0104 chemical sciencesspectrometryOpticsinstrumentbiological physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]0210 nano-technologybusinessComputingMilieux_MISCELLANEOUS
researchProduct

Lipid multilayered particles: the role of chitosan on structure and morphology

2010

Multilayered nanovectors made up from a controlled binary lipid mixture (POPC and DMPS) and trimethyl chitosan (TMC) have been prepared and characterized by light- and small angle neutron scattering. The morphology and the multilayer structure of the particle outer shell has been described in detail. By varying the amount of TMC in the starting solution it is possible to tune the overall surface particle charge as well as its multilamellarity. In this way the drug loading/release properties of the particles can be controlled. Therefore the use of controlled POPC/DMPS mixtures can be a valid alternative to commercial lecithin to obtain nanovectors with specific release properties.

food.ingredientMaterials scienceMorphology (linguistics)Shell (structure)General ChemistryParticle chargeCondensed Matter PhysicsLecithinSmall-angle neutron scatteringChitosanchemistry.chemical_compoundCrystallographyfoodchemistryChemical engineeringParticlePOPCSoft Matter
researchProduct

The dimer-monomer equilibrium of SARS-CoV-2 main protease is affected by small molecule inhibitors

2021

AbstractThe maturation of coronavirus SARS-CoV-2, which is the etiological agent at the origin of the COVID-19 pandemic, requires a main protease Mpro to cleave the virus-encoded polyproteins. Despite a wealth of experimental information already available, there is wide disagreement about the Mpro monomer-dimer equilibrium dissociation constant. Since the functional unit of Mpro is a homodimer, the detailed knowledge of the thermodynamics of this equilibrium is a key piece of information for possible therapeutic intervention, with small molecules interfering with dimerization being potential broad-spectrum antiviral drug leads. In the present study, we exploit Small Angle X-ray Scattering (…

0301 basic medicineMolecular biologyProtein ConformationSciencemedicine.medical_treatmentDimerBiophysicsPlasma protein binding010402 general chemistryAntiviral Agents01 natural sciencesArticleDissociation (chemistry)03 medical and health scienceschemistry.chemical_compoundProtein structureX-Ray DiffractionDrug DiscoverymedicineHumansProtease InhibitorsCoronavirus 3C ProteasesVirtual screeningMultidisciplinaryProteaseSARS-CoV-2ChemistryQSARS-CoV-2 main protease Mpro enzymatic activity inhibition Small Angle X-ray Scattering small inhibitors virtual screeningRCOVID-19Computational BiologySmall moleculeComputational biology and bioinformatics0104 chemical sciencesMolecular Docking SimulationDissociation constant030104 developmental biologyBiophysicsMedicineThermodynamicsDimerizationProtein Binding
researchProduct

Water Dynamics in Neural Tissue

2013

Water dynamics in post-mortem two-years old bovine cerebral right hemisphere has been investigated through Elastic and Quasi-elastic Neutron Scattering. Experimental parameters such as stability in time of the proton dynamics, data reproducibility and changes in the tissues dynamics upon the conservation protocol, cryogenic towards formalin addition, have been carefully investigated. Results are extremely encouraging and comparisons to magnetic resonance imaging findings are discussed.

ReproducibilityMaterials sciencemedicine.diagnostic_testProtonneutron scatteringDynamics (mechanics)proton dynamicsGeneral Physics and AstronomyMagnetic resonance imagingNeutron scatteringNuclear magnetic resonanceWater dynamicsmedicineRight hemispherediffusion magnetic resonance imagingJournal of the Physical Society of Japan
researchProduct