0000000000427211

AUTHOR

P. Senne

Fast, low-level detection of strontium-90 and strontium-89 in environmental samples by collinear resonance ionization spectroscopy

Environmental assessment in the wake of a nuclear accident requires the rapid determination of the radiotoxic isotopes 89Sr and 90Sr. Useful measurements must be able to detect 108 atoms in the presence of about 1018 atoms of the stable, naturally occurring isotopes. This paper describes a new approach to this problem using resonance ionization spectroscopy in collinear geometry, combined with classical mass separation. After collection and chemical separation, the strontium from a sample is surface-ionized and the ions are accelerated to an energy of about 30 keV. Initially, a magnetic mass separator provides an isotopic selectivity of about 106. The ions are then neutralized by charge exc…

research product

Quantitative Detection of Strontium-90 and Strontium-89 in Environmental Samples by Laser Mass Spectrometry

Parallel to the strongly growing public concern about environmental problems, new ideas for trace detection and analysis of toxic and radioactive material are being developed. One of these new and outstanding experimental techniques is the application of analytical laser spectroscopy. Most interesting in this context is the method of resonance ionization spectroscopy (RIS), as proposed1 already in 1972 combining very high sensitivity in the detection of the element or isotope under investigation with high selectivity in the suppression of contaminants2–4.

research product

Direct determination of the mass of28Si as a contribution to a new definition of the kilogram

The mass of 28Si has been determined to be m(28Si) = 27.976 926 57(30) u by comparing the cyclotron frequencies of the singly charged ions 12C+, 12C+3 and 28Si+ in a Penning trap mass spectrometer. The experimental technique and the setup are described. The obtained accuracy as well as possible improvements are discussed. Our measurements are related to current efforts to base the kilogram on atomic properties by using an almost perfect single crystal of silicon.

research product

Precision mass measurements using a penning trap and highly charged ions produced in an electron beam ion source

A method for precision mass measurements in a Penning trap using highly charged ions produced in an electron beam ion source (CRYSIS) has been developed. The cyclotron frequencies for O8+, 7+, 6+, 5+ and Ar18+, 17+, 16+, 15+, 14+, 13+ ions have been determined by the excitation of the sum frequency v+ + v−. In addition to CRYSIS ions, H+, H2+ and He+ ions were produced by electron bombardment of the H2 rest gas or helium gas introduced through an UHV leak valve into an auxiliary ion trap (or a pre-trap). A technique for fast (seconds) interchanging of the ion species in the precision trap has been implemented to reduce the long term magnetic field drift.

research product