0000000000428377

AUTHOR

Stefan Jansson

0000-0002-7906-6891

The Norway spruce genome sequence and conifer genome evolution

Conifers have dominated forests for more than 200 million years and are of huge ecological and economic importance. Here we present the draft assembly of the 20-gigabase genome of Norway spruce (Picea abies), the first available for any gymnosperm. The number of well-supported genes (28,354) is similar to the >100 times smaller genome of Arabidopsis thaliana, and there is no evidence of a recent whole-genome duplication in the gymnosperm lineage. Instead, the large genome size seems to result from the slow and steady accumulation of a diverse set of long-terminal repeat transposable elements, possibly owing to the lack of an efficient elimination mechanism. Comparative sequencing of Pinu…

research product

Pigment Binding, Fluorescence Properties, and Oligomerization Behavior of Lhca5, a Novel Light-harvesting Protein

A new potential light-harvesting protein, named Lhca5, was recently detected in higher plants. Because of the low amount of Lhca5 in thylakoid membranes, the isolation of a native Lhca5 pigment-protein complex has not been achieved to date. Therefore, we used in vitro reconstitution to analyze whether Lhca5 binds pigments and is actually an additional light-harvesting protein. By this approach we could demonstrate that Lhca5 binds pigments in a unique stoichiometry. Analyses of pigment requirements for light-harvesting complex formation by Lhca5 revealed that chlorophyll b is the only indispensable pigment. Fluorescence measurements showed that ligated chlorophylls and carotenoids are arran…

research product

Lhca5 interaction with plant photosystem I

AbstractIn the outer antenna (LHCI) of higher plant photosystem I (PSI) four abundantly expressed light-harvesting protein of photosystem I (Lhca)-type proteins are organized in two heterodimeric domains (Lhca1/Lhca4 and Lhca2/Lhca3). Our cross-linking studies on PSI-LHCI preparations from wildtype Arabidopsis and pea plants indicate an exclusive interaction of the rarely expressed Lhca5 light-harvesting protein with LHCI in the Lhca2/Lhca3-site. In PSI particles with an altered LHCI composition Lhca5 assembles in the Lhca1/Lhca4 site, partly as a homodimer. This flexibility indicates a binding-competitive model for the LHCI assembly in plants regulated by molecular interactions of the Lhca…

research product