0000000000432621

AUTHOR

Chiara Gualandi

New composite materials made up of nanofibers and hydrogel as biomimetic scaffolds for human pluripotent stem cell culture

research product

Poly-l-Lactic Acid Nanofiber-Polyamidoamine Hydrogel Composites: Preparation, Properties, and Preliminary Evaluation as Scaffolds for Human Pluripotent Stem Cell Culturing.

Electrospun poly-l-lactic acid (PLLA) nanofiber mats carrying surface amine groups, previously introduced by nitrogen atmospheric pressure nonequilibrium plasma, are embedded into aqueous solutions of oligomeric acrylamide-end capped AGMA1, a biocompatible polyamidoamine with arg-gly-asp (RGD)-reminiscent repeating units. The resultant mixture is finally cured giving PLLA-AGMA1 hydrogel composites that absorb large amounts of water and, in the swollen state, are translucent, soft, and pliable, yet as strong as the parent PLLA mat. They do not split apart from each other when swollen in water and remain highly flexible and resistant, since the hydrogel portion is covalently grafted onto the …

research product

Effects of Nylon 6,6 Nanofibrous Mats on Thermal Properties and Delamination Behavior of High Performance CFRP Laminates

none 8 no Nylon 6,6 electrospun nanofibrous membranes interleaved in Carbon Fibre Reinforced Plastic (CFRP) laminates have been proposed as a means to provide a higher threshold value to delamination on structural sites where composites are more prone to develop such failure. A model, highly crosslinked thus inherently brittle, epoxy matrix was selected for its high Young’s modulus and glass transition temperature exceeding 250 °C. The influence of the Nylon 6,6 nanofibres on the curing behaviour of the matrix and on the thermal and dynamic mechanical properties of the cured resin was investigated. These properties were related to the features of the epoxy resin and of the resin impregnated…

research product