0000000000437218

AUTHOR

Francesco Tombesi

The Voyage of Metals in the Universe from Cosmological to Planetary Scales: the need for a Very High-Resolution, High Throughput Soft X-ray Spectrometer

Metals form an essential part of the Universe at all scales. Without metals we would not exist, and the Cosmos would look completely different. Metals are primarily born through nuclear processes in stars. They leave their cradles through winds or explosions, and then start their journey through space. This can lead them in and out of astronomical objects on all scales, ranging from comets, planets, stars, entire galaxies, groups and clusters of galaxies to the largest structures of the Universe. Their wanderings are fundamental in determining how these objects, and the entire universe, evolve. In addition, their bare presence can be used to trace what these structures look like. The scope …

research product

Accretion in strong field gravity with eXTP

In this paper we describe the potential of the enhanced X-ray Timing and Polarimetry (eXTP) mission for studies related to accretion flows in the strong field gravity regime around both stellar-mass and supermassive black-holes. eXTP has the unique capability of using advanced 'spectral-timing-polarimetry' techniques to analyze the rapid variations with three orthogonal diagnostics of the flow and its geometry, yielding unprecedented insight into the inner accreting regions, the effects of strong field gravity on the material within them and the powerful outflows which are driven by the accretion process.

research product

The Large Observatory For x-ray Timing

The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…

research product

Observatory science with eXTP

Disponible preprint en: arXiv:1812.04023v1 [astro-ph.HE] [v1] Mon, 10 Dec 2018 19:00:52 UTC (4,376 KB)

research product