0000000000437675

AUTHOR

C. Ferrigno

showing 5 related works from this author

LOFT: the Large Observatory For X-ray Timing

2012

The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultra-dense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV,…

[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]VisionX-ray timingAstronomySPIE ProceedingsObservatoriesX-ray timing X-ray spectroscopy X-ray imaging compact objectsSilicon Drift ChambersFOS: Physical sciencesddc:500.2X-ray missionsSpace (mathematics)Astrophysics01 natural sciences7. Clean energySettore FIS/05 - Astronomia E AstrofisicaX-rays0103 physical sciencesElectronicOptical and Magnetic MaterialsInstrumentation (computer programming)Electrical and Electronic EngineeringAerospace engineeringDiagnosticsCompact objects010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsSpatial resolutionsezeleSensors010308 nuclear & particles physicsbusiness.industryApplied MathematicsX-ray imagingSilicon Drift ChamberComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter PhysicsCompact objects; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic Engineering[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]X-ray spectroscopySilicon Drift Chambers; X-ray missionsInstrumentation and Methods for AstrophysicsAstrophysics - Instrumentation and Methods for Astrophysicsbusiness
researchProduct

Software Timing Calibration of the ARGO-YBJ Detector

2009

The ARGO-YBJ experiment is mainly devoted to search for astronomical gamma sources. The arrival direction of air showers is reconstructed thanks to the times measured by the pixels of the detector. Therefore, the timing calibration of the detector pixels is crucial in order to get the best angular resolution and pointing accuracy. Because of the large number of pixels a hardware timing calibration is practically impossible. Therefore an off-line software calibration has been adopted. Here, the details of the procedure and the results are presented. (C) 2008 Elsevier B.V. All rights reserved.

PhysicsPixelCalibration (statistics)business.industryPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDetectorSettore FIS/01 - Fisica SperimentaleComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsAstronomia gammaGamma Astronomy Timing Calibration Extensive Air ShowersSciami estesiCalibrazione temporaleOpticsSoftwareRaggi cosmiciSettore FIS/05 - Astronomia e AstrofisicaAngular resolutionbusinessArgoRemote sensing
researchProduct

The Status of the ARGO Experiment at YBJ

2007

The ARGO-YBJ experiment, located at Yangbajing, Tibet, China, performed by a wide Sino-Italian collaboration, is designed to study cosmic rays, sub-TeV gamma ray sources and GeV Gamma Ray Burst (GRB) emission in the northern hemisphere, by means of detecting small size EAS (Extensive Air Shower) using a full coverage RPC (Resistive Plate Chamber) carpet. The central carpet of the detector is installed and put into operation to date, with 1900 m^2 of the carpet already operating since December 2004. With a trigger multiplicity of ≥60 hits, corresponding to a primary mode energy of 2 TeV, the angular resolution of EAS measurements is < 1 degree for showers with more than 500 recorded hits. We…

PhysicsNuclear and High Energy PhysicsCosmic rays gamma ray sources Gamma Ray Burst Extensive Air Shower Resistive Plate ChamberARGO-YBJAstrophysics::High Energy Astrophysical PhenomenaDetectorNorthern HemisphereGamma rayAstrophysics::Instrumentation and Methods for AstrophysicsResistive plate chamberCosmic rayAstrophysicsAstronomia gammaAtomic and Molecular Physics and OpticsSciami estesiRaggi cosmiciAir showerGamma-ray burstArgo
researchProduct

Scaler mode technique for the ARGO-YBJ detector

2008

The ARGO-YBJ experiment has been designed to study the Extensive Air Showers with an energy threshold lower than that of the existing arrays by exploiting the high altitude location(4300 m a.s.l. in Tibet, P.R. China) and the full ground plane coverage. The lower energy limit of the detector (E $\sim$ 1 GeV) is reached by the scaler mode technique, i.e. recording the counting rate at fixed time intervals. At these energies, transient signals due to local (e.g. Forbush Decreases) and cosmological (e.g. Gamma Ray Bursts) phenomena are expected as a significant variation of the counting rate compared to the background. In this paper the performance of the ARGO-YBJ detector operating in scaler …

Gamma ray burstAstrophysics::High Energy Astrophysical PhenomenaCamere a piani resistiviFOS: Physical sciencesCosmic rayAstrophysicsRivelatori di sciami estesi01 natural sciencesRaggi cosmiciOpticsSettore FIS/05 - Astronomia e Astrofisica0103 physical sciencesLimit (music)010303 astronomy & astrophysicsArgoGround planegamma ray bursts cosmic rays extended air showersPhysics010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleAstrophysics (astro-ph)DetectorMode (statistics)Astronomy and AstrophysicsSciami estesibusinessGamma-ray burstEnergy (signal processing)
researchProduct

XIPE: the x-ray imaging polarimetry explorer

2016

XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror bu…

X-ray AstronomyHigh-energy astronomyPolarimetryX-ray opticsX-ray telescopeCondensed Matter Physic01 natural sciencesObservatory0103 physical sciencesPolarimetryElectronicOptical and Magnetic MaterialsSpectral resolutionElectrical and Electronic Engineering010303 astronomy & astrophysicsGas Pixel DetectorPhysicsX-ray astronomyta115X-ray optics010308 nuclear & particles physicsElectronic Optical and Magnetic MaterialApplied MathematicsVegaAstronomyComputer Science Applications1707 Computer Vision and Pattern RecognitionGas Pixel Detector; Polarimetry; X-ray Astronomy; X-ray opticsCondensed Matter PhysicsComputer Science ApplicationsApplied MathematicGas Pixel Detector; Polarimetry; X-ray Astronomy; X-ray optics; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringGas Pixel Detector; Polarimetry; X-ray Astronomy; X-ray optics; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications; Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringComputer Vision and Pattern RecognitionX-ray optic
researchProduct