0000000000441462

AUTHOR

Lucas Matana Luza

showing 5 related works from this author

Effects of Thermal Neutron Irradiation on a Self-Refresh DRAM

2020

International audience; In this study, static and dynamic test methods were used to define the response of a self-refresh DRAM under thermal neutron irradiation. The neutron-induced failures were investigated and characterized by event cross-sections, soft-error rate and bitmaps evaluations, leading to an identification of permanent and temporarily stuck cells, block errors, and single-bit upsets.

010302 applied physicsMaterials science010308 nuclear & particles physicsNuclear engineering01 natural sciencesNeutron temperature[SPI.TRON]Engineering Sciences [physics]/Electronics0103 physical sciences[INFO.INFO-ES]Computer Science [cs]/Embedded SystemsNeutronIrradiation[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsDramBlock (data storage)Dynamic testing2020 15th Design & Technology of Integrated Systems in Nanoscale Era (DTIS)
researchProduct

Neutron-Induced Effects on a Self-Refresh DRAM

2022

International audience; The field of radiation effects in electronics research includes unknowns for every new device, node size, and technical development. In this study, static and dynamic test methods were used to define the response of a self-refresh DRAM under neutron irradiation. The neutron-induced effects were investigated and characterised by event cross sections, soft-error rate, and bitmaps evaluations, leading to an identification of permanent and temporary stuck cells, single-bit upsets, and block errors. Block errors were identified in different patterns with dependency in the addressing order, leading to up to two thousand faulty words per event, representing a real threat fr…

HyperRAMComputer science020209 energykäyttömuistitSelf-Refresh02 engineering and technologyNeutronFault (power engineering)elektroniikkakomponentit0202 electrical engineering electronic engineering information engineering0601 history and archaeologyElectrical and Electronic Engineering[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsSafety Risk Reliability and QualitySimulationhiukkassäteilyBlock (data storage)060102 archaeologyEvent (computing)stuck bitsneutronit06 humanities and the artscomputer.file_formatCondensed Matter PhysicsSelf-refreshAtomic and Molecular Physics and OpticsSEESurfaces Coatings and FilmsElectronic Optical and Magnetic Materials[SPI.TRON]Engineering Sciences [physics]/ElectronicsradiationIdentification (information)DRAMsäteilyfysiikkaStuck bitsBitmapNode (circuits)[INFO.INFO-ES]Computer Science [cs]/Embedded SystemscomputerDramDynamic testing
researchProduct

Technology Impact on Neutron-Induced Effects in SDRAMs : A Comparative Study

2021

International audience; This study analyses the response of synchronous dynamic random access memories to neutron irradiation. Three different generations of the same device with different node sizes (63, 72, and 110 nm) were characterized under an atmospheric-like neutron spectrum at the ChipIr beamline in the Rutherford Appleton Laboratories, UK. The memories were tested with a reduced refresh rate to expose more single-event upsets and under similar conditions provided by a board specifically developed for this type of study in test facilities. The board has also been designed to be used as a nanosatellite payload in order to perform similar tests. The neutron-induced failures were studi…

NeutronsComputer sciencePayloadkäyttömuistitStuck Bitsneutronitmuistit (tietotekniikka)Technology impactSEERefresh rate[SPI.TRON]Engineering Sciences [physics]/ElectronicsRadiation EffectsBeamlinesäteilyfysiikkaNeutronNode (circuits)[INFO.INFO-ES]Computer Science [cs]/Embedded Systems[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsSDRAMNeutron irradiationSimulationRandom accessavaruustekniikka
researchProduct

Investigating the Impact of Radiation-Induced Soft Errors on the Reliability of Approximate Computing Systems

2020

International audience; Approximate Computing (AxC) is a well-known paradigm able to reduce the computational and power overheads of a multitude of applications, at the cost of a decreased accuracy. Convolutional Neural Networks (CNNs) have proven to be particularly suited for AxC because of their inherent resilience to errors. However, the implementation of AxC techniques may affect the intrinsic resilience of the application to errors induced by Single Events in a harsh environment. This work introduces an experimental study of the impact of neutron irradiation on approximate computing techniques applied on the data representation of a CNN.

Approximate computingComputer scienceReliability (computer networking)Radiation effectsRadiation induced02 engineering and technologyneuroverkotExternal Data Representation01 natural sciencesConvolutional neural networkSoftwareHardware020204 information systems0103 physical sciences0202 electrical engineering electronic engineering information engineering[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsResilience (network)mikroprosessoritNeutronsResilience010308 nuclear & particles physicsbusiness.industryReliabilityApproximate computingPower (physics)[SPI.TRON]Engineering Sciences [physics]/ElectronicsComputer engineeringsäteilyfysiikka[INFO.INFO-ES]Computer Science [cs]/Embedded SystemsbusinessSoftware
researchProduct

Electron-Induced Upsets and Stuck Bits in SDRAMs in the Jovian Environment

2021

This study investigates the response of synchronous dynamic random access memories to energetic electrons and especially the possibility of electrons to cause stuck bits in these memories. Three different memories with different node sizes (63, 72, and 110 nm) were tested. Electrons with energies between 6 and 200 MeV were used at RADiation Effects Facility (RADEF) in Jyvaskyla, Finland, and at Very energetic Electron facility for Space Planetary Exploration missions in harsh Radiative environments (VESPER) in The European Organization for Nuclear Research (CERN), Switzerland. Photon irradiation was also performed in Jyvaskyla. In these irradiation tests, stuck bits originating from electro…

Nuclear and High Energy Physics[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicskäyttömuistitHardware_PERFORMANCEANDRELIABILITYElectronRadiationelektronit01 natural sciencesJovianelektroniikkakomponentitElectron radiationJupiterelectron radiation0103 physical sciencesRadiative transfer[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsElectrical and Electronic EngineeringavaruustekniikkaPhysicsHardware_MEMORYSTRUCTURESLarge Hadron Collider010308 nuclear & particles physicsionisoiva säteilystuck bits[SPI.TRON] Engineering Sciences [physics]/Electronics[INFO.INFO-ES] Computer Science [cs]/Embedded Systemstotal ionizing dose[SPI.TRON]Engineering Sciences [physics]/ElectronicsComputational physicssäteilyfysiikkaNuclear Energy and Engineeringradiation effectssingle event upsets[INFO.INFO-ES]Computer Science [cs]/Embedded SystemsNode (circuits)Random accessIEEE Transactions on Nuclear Science
researchProduct