Learning Bag of Spatio-Temporal Features for Human Interaction Recognition
Bag of Visual Words Model (BoVW) has achieved impressive performance on human activity recognition. However, it is extremely difficult to capture high-level semantic meanings behind video features with this method as the spatiotemporal distribution of visual words is ignored, preventing localization of the interactions within a video. In this paper, we propose a supervised learning framework that automatically recognizes high-level human interaction based on a bag of spatiotemporal visual features. At first, a representative baseline keyframe that captures the major body parts of the interacting persons is selected and the bounding boxes containing persons are extracted to parse the poses o…