0000000000446356

AUTHOR

D. Mcdonald

showing 14 related works from this author

Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating

2017

We describe a new technique for the efficient generation of high-energy ions with electromagnetic ion cyclotron waves in multi-ion plasmas. The discussed ‘three-ion’ scenarios are especially suited for strong wave absorption by a very low number of resonant ions. To observe this effect, the plasma composition has to be properly adjusted, as prescribed by theory. We demonstrate the potential of the method on the world-largest plasma magnetic confinement device, JET (Joint European Torus, Culham, UK), and the high-magnetic-field tokamak Alcator C-Mod (Cambridge, USA). The obtained results demonstrate efficient acceleration of 3He ions to high energies in dedicated hydrogen–deuterium mixtures.…

Astrophysical plasmasTokamakradio-frequency heatingCyclotronJoint European TorusPlasma heatingGeneral Physics and AstronomyFREQUENCY114 Physical sciences01 natural sciences7. Clean energyMagnetically confined plasmas010305 fluids & plasmaslaw.inventionIonPHYSICSPhysics and Astronomy (all)FUSIONMODE CONVERSIONlawPhysics::Plasma Physics0103 physical sciencesDielectric heating010306 general physicsPhysics[PHYS]Physics [physics]ta114Solar flare:Física [Àrees temàtiques de la UPC]Plasma dynamicsmulti-ion plasmasSettore FIS/01 - Fisica SperimentaleMagnetic confinement fusionPlasmaHE-3-RICH SOLAR-FLARESTècniques de plasmaJETCYCLOTRON RANGETOKAMAKPhysics::Space PhysicsAtomic physicsHE-3-RICH SOLAR-FLARES; MODE CONVERSION; CYCLOTRON RANGE; FUSION; JET; FREQUENCY; TOKAMAK; PHYSICS
researchProduct

Novel method for determination of tritium depth profiles in metallic samples

2019

Tritium accumulation in fusion reactor materials is considered a serious radiological issue, therefore a lot of effort has been concentrated on the development of radiometric techniques. A novel method, based on gradual dissolution, for the determination of the total tritium content and its depth profiles in metallic samples is demonstrated. This method allows for the measurement of tritium in metallic samples after their exposure to a hydrogen and tritium mixture, tritium containing plasma or after irradiation with neutrons resulting in tritium formation. In this method, successive layers of metal are removed using an appropriate etching agent in the controlled regime and the amount of evo…

inorganic chemicalsfusionNuclear and High Energy PhysicsMaterials scienceNuclear engineeringchemistry.chemical_elementheliumBlanket114 Physical sciences01 natural sciences010305 fluids & plasmasblanketMetalirradiated berylliumjet0103 physical sciencespolycyclic compounds010306 general physicsHeliumbreeding blanketJet (fluid)Fusiontritiumbehaviororganic chemicalshydrogen diffusiontemperatureiter-like-wallFusion powerfirst wallberylliumCondensed Matter Physicschemistryvisual_arttransportcardiovascular systemvisual_art.visual_art_mediumdepth profileTritiumBerylliumNuclear Fusion
researchProduct

Overview of the JET results

2015

Since the installation of an ITER-like wall, the JET programme has focused on the consolidation of ITER design choices and the preparation for ITER operation, with a specific emphasis given to the bulk tungsten melt experiment, which has been crucial for the final decision on the material choice for the day-one tungsten divertor in ITER. Integrated scenarios have been progressed with the re-establishment of long-pulse, high-confinement H-modes by optimizing the magnetic configuration and the use of ICRH to avoid tungsten impurity accumulation. Stationary discharges with detached divertor conditions and small edge localized modes have been demonstrated by nitrogen seeding. The differences in…

Chemical analysiMagnetic confinementEdge localized modeTokamak:Física [Ciências exactas e naturais]Nuclear engineeringplasma-facing componentsTungsten7. Clean energyiter-like walllaw.inventionheat loadsAlcator C-ModlawPlasma-facing componentalcator C-MODQCPhysicsJet (fluid)Thermally activatedDivertormagnetic confinementMagnetic confinement fusionTokamak deviceerosionCondensed Matter PhysicsChemical erosionPost mortem analysiCondensed Matter Physics; Nuclear and High Energy PhysicsBerylliumAtomic physicstokamaksTokamaksNuclear and High Energy Physicschemistry.chemical_elementImpurity accumulationCondensed Matter PhysicNuclear and High Energy Physics; Condensed Matter PhysicsTungstenFísica Física:Physical sciences [Natural sciences]divertorNuclear fusionNuclear and High Energy PhysicPhysics Physical sciencesGas fuel analysifuel retentionSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)operationOrders of magnitudechemistryJETtransportMagnetic configuration
researchProduct

Inclusive quarkonium production at forward rapidity in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usep…

2016

We report on the inclusive production cross sections of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{J}/\psi }$$\end{document}J/ψ, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\psi (\mathrm{2S})}$$\end{document}ψ(2S), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepac…

Regular Article - Experimental PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

Charged jet cross sections and properties in proton-proton collisions at $\sqrt{s}=7$ TeV

2015

The differential charged jet cross sections, jet fragmentation distributions, and jet shapes are measured in minimum bias proton-proton collisions at centre-of-mass energy $\sqrt{s}=7$ TeV using the ALICE detector at the LHC. Jets are reconstructed from charged particle momenta in the mid-rapidity region using the sequential recombination $k_{\rm T}$ and anti-$k_{\rm T}$ as well as the SISCone jet finding algorithms with several resolution parameters in the range $R=0.2$ to $0.6$. Differential jet production cross sections measured with the three jet finders are in agreement in the transverse momentum ($p_{\rm T}$) interval $20<p_{\rm T}^{\rm jet,ch}<100$ GeV/$c$. They are also consistent w…

shapes:Kjerne- og elementærpartikkelfysikk: 431 [VDP]parton distributionsMonte Carlo methodP(P)OVER-BAR COLLISIONSALICE Charged jet proton-proton 7 TeVATLAS DETECTOR01 natural sciencesSpectral lineHigh Energy Physics - Experimentdifferential charged jet cross sectionENERGYHigh Energy Physics - Experiment (hep-ex)ALICEFragmentation (mass spectrometry)Nuclear and High Energy Physics differential charged jet cross sectionfragmentation[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)ROOT-S(NN)=2.76 TEVNuclear ExperimentNuclear Experimentroot-s(nn)=2.76 tevatlas detectorPhysicsLarge Hadron Collidercross sectionPhysicsDetectorCharged particle3. Good health:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]charged jetsPRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]SHAPESTransverse momentumHADRON-COLLISIONSFRAGMENTATIONpp collisionsenergyParticle physicsNuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaCharged jetVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciencestransverse-momentumNuclear physicsMinimum bias(P)OVER-BAR-P COLLISIONS P(P)OVER-BAR COLLISIONS PP COLLISIONS PARTON DISTRIBUTIONS TRANSVERSE-MOMENTUM SHAPES ALGORITHM ENERGY0103 physical sciences7 TeVNuclear Physics - Experimentproton-protonALGORITHM010306 general physics(p)over-bar-p collisionsPP COLLISIONSta114(P)OVER-BAR-P COLLISIONSVDP::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]TRANSVERSE-MOMENTUMNATURAL SCIENCES. Physics.(p)over-bar-p collisions ; parton distributions ; transverse-momentum ; root-s(nn)=2.76 tev ; hadron-collisions ; atlas detector ; pp collisions ; fragmentation ; shapes ; energy ; charged jet ; cross section ; proton-proton ; 7 TeVhadron-collisionsPARTON DISTRIBUTIONSALICE; Charged jet; proton-proton; 7 TeVproton-proton collisionsHigh Energy Physics::Experimentcharged jet
researchProduct

Comparison of the structure of the plasma-facing surface and tritium accumulation in beryllium tiles from JET ILW campaigns 2011-2012 and 2013-2014

2019

In this study, beryllium tiles from Joint European Torus (JET) vacuum vessel wall were analysed and compared regarding their position in the vacuum vessel and differences in the exploitation conditions during two campaigns of ITER-Like-Wall (ILW) in 2011-2012 (ILW1) and 2013-2014 (ILW2) Tritium content in beryllium samples were assessed. Two methods were used to measure tritium content in the samples - dissolution under controlled conditions and tritium thermal desorption. Prior to desorption and dissolution experiments, scanning electron microscopy and energy dispersive x-ray spectroscopy were used to study structure and chemical composition of plasma-facing-surfaces of the beryllium sampl…

Fuel retentionPhysics::Medical Physics01 natural sciencesQuantitative Biology::Cell Behavior010305 fluids & plasmasiter-like walljoint european torusRETENTION010302 applied physicsJet (fluid)tritiumPhysicsMechanicsSurface (topology)Fusion Plasma and Space Physicslcsh:TK9001-9401surgical procedures operativecardiovascular systemJoint European TorusTritiumBerylliumBerylliumNuclear and High Energy PhysicsretentionTechnology and Engineeringanimal structuresMaterials scienceQuantitative Biology::Tissues and OrgansMaterials Science (miscellaneous)Joint European Toruschemistry.chemical_elementTritium114 Physical sciencesGeneral Relativity and Quantum CosmologyFusion plasma och rymdfysik0103 physical sciencesddc:530ITER-LIKE-WALLITER-like walltechnology industry and agriculturePlasmaiter-like-wallberylliumTRANSPORTfuel retentionbody regionsNuclear Energy and Engineeringchemistrytransportlcsh:Nuclear engineering. Atomic power
researchProduct

Measurement of pion, kaon and proton production in proton–proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym…

2015

The measurement of primary \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^{\pm }$$\end{document}π±, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{\pm }$$\end{document}K±, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrs…

Regular Article - Experimental PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

Production of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}…

2016

The production of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{*}$$\end{document}∗(892)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{0}$$\end{document}0 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage…

Regular Article - Experimental PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

Direct photon production in Pb–Pb collisions atsNN=2.76 TeV

2016

Direct photon production at mid-rapidity in Pb–Pb collisions at √sNN = 2.76 TeV was studied in the transverse momentum range 0.9<pT<14 GeV/c. Photons were detected with the highly segmented electromagnetic calorimeter PHOS and via conversions in the ALICE detector material with the e+e− pair reconstructed in the central tracking system. The results of the two methods were combined and direct photon spectra were measured for the 0–20%, 20–40%, and 40–80% centrality classes. For all three classes, agreement was found with perturbative QCD calculations for pT≳5 GeV/c. Direct photon spectra down to pT≈1 GeV/c could be extracted for the 20–40% and 0–20% centrality classes. The significance of th…

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsPhoton010308 nuclear & particles physicsHadronBremsstrahlungPerturbative QCD01 natural sciencesParticle identificationNuclear physics0103 physical sciencesRapidityNuclear Experiment010306 general physicsGlauberPhysics Letters B
researchProduct

Precision measurement of the mass difference between light nuclei and anti-nuclei

2015

The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons and anti-deuterons, and $^{3}{\rm He}$ and $^3\overline{\rm He}…

electronQuarkspectroscopyAntiparticleParticle physicsPhysics of Elementary Particles and FieldsCPT symmetryStrong interactionNuclear TheoryantunucleiFOS: Physical sciencesAntiprotonGeneral Physics and Astronomy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ElectronHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Physics - ExperimentNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentAntihydrogenSpectroscopyNuclear Physicsantihydrogenmass measurementQuantum chromodynamicsPhysicsanti-nucleita114SPECTROSCOPY; ANTIHYDROGEN; ANTIPROTON; ELECTRONmass difference nuclei antunucleiHigh Energy Physics::Phenomenologymass differenceNATURAL SCIENCES. Physics.3. Good healthGluonPRIRODNE ZNANOSTI. Fizika.antiprotonnucleiQuark–gluon plasmamassmass difference ; nuclei ; anti-nuclei ; ALICE ; CERNHigh Energy Physics::ExperimentNucleon
researchProduct

Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

2016

ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons a…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Physics::Instrumentation and Detectorshigh muon multiplicity01 natural sciences7. Clean energyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ALICECERN[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)Nuclear Experimentcosmic rayPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Large Hadron ColliderDetectorVDP::Kjerne- og elementærpartikkelfysikk: 431ENERGY-SPECTRUMPRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGcosmic rays detectorsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics and Astronomy[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FOS: Physical sciencescosmic ray experimentCosmic ray[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]EXTENSIVE AIR-SHOWERScosmic ray ; high muon multiplicity ; ALICE ; CERNBUNDLES114 Physical sciencesREGIONNuclear physicsALICE detectorcosmic rays0103 physical sciencesMultiplicity (chemistry)cosmic rays detector010306 general physicsatmospheric muonsMuon010308 nuclear & particles physicscosmic ray experiments; cosmic rays detectors;EXTENSIVE AIR-SHOWERS; ENERGY-SPECTRUM; BUNDLES; REGION; LEPAstronomy and AstrophysicsLEP115 Astronomy Space scienceNATURAL SCIENCES. Physics.13. Climate actioncosmic ray experiments; cosmic rays detectors; Astronomy and AstrophysicsHigh Energy Physics::Experimentcosmic ray experiments
researchProduct

Centrality dependence of charged jet production in p–Pb collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepac…

2016

Measurements of charged jet production as a function of centrality are presented for  p–Pb  collisions recorded at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s_\mathrm {NN}}= 5.02$$\end{document}sNN=5.02 TeV with the ALICE detector. Centrality classes are determined via the energy deposit in neutron calorimeters at zero degree, close to the beam direction, to minimise dynamical biases of the selection. The corresponding number of participants or binary nucleon–nucleon collisions is determined based on…

Regular Article - Theoretical PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

Measurement of electrons from heavy-flavour hadron decays in p–Pb collisions at sNN=5.02TeV

2016

The production of electrons from heavy-flavour hadron decays was measured as a function of transverse momentum (pT) in minimum-bias p–Pb collisions at √sNN = 5.02 TeV using the ALICE detector at the LHC. The measurement covers the pT interval 0.5 < pT < 12 GeV/c and the rapidity range −1.065 < ycms < 0.135 in the centre-of-mass reference frame. The contribution of electrons from background sources was subtracted using an invariant mass approach. The nuclear modification factor RpPb was calculated by comparing the pT-differential invariant cross section in p–Pb collisions to a pp reference at the same centre-of-mass energy, which was obtained by interpolating measurements at √s = 2.76 TeV an…

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsHadronQuarkoniumNuclear matter01 natural sciences7. Clean energyParticle identificationNuclear physics0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentInvariant massRapidityNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Modelling of JET hybrid plasmas with emphasis on performance of combined ICRF and NBI heating

2018

International audience; During the 2015--2016 JET campaigns, many efforts have been devoted to the exploration of high-performance plasma scenarios envisaged for DT operation in JET. In this paper, we review various key recent hybrid discharges and model the combined ICRF NBI heating. These deuterium discharges with deuterium beams had the ICRF antenna frequency tuned to match the cyclotron frequency of minority H at the centre of the tokamak coinciding with the second harmonic cyclotron resonance of D. The modelling takes into account the synergy between ICRF and NBI heating through the second harmonic cyclotron resonance of D beam ions, allowing us to assess its impact on the neutron rate…

Nuclear and High Energy PhysicsLight nucleusfusionPlasma heatingicrf heatingNuclear engineeringion-cyclotron rangeCyclotronJET hybrid plasmaICRF heating; NBI heating; JET hybrid plasmas; fusion enhancement; ION-CYCLOTRON RANGE; ENHANCEMENT; FUSION7. Clean energy01 natural sciences010305 fluids & plasmaslaw.inventionICRF heatingfusion enhancementdt plasmaslawNBI heating0103 physical sciences010306 general physicsjet hybrid plasmastokamakenhancementfusion enhancement; ICRF heating; JET hybrid plasmas; NBI heatingnbi heatingJet (fluid)Emphasis (telecommunications)PlasmaCondensed Matter PhysicsJET hybrid plasmasSettore ING-IND/20 - Misure e Strumentazione NucleariresonanceEnvironmental science[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct