0000000000448695

AUTHOR

Valérie Daux

0000-0002-8643-260x

Carbon, nitrogen and oxygen isotope fractionation during food cooking: Implications for the interpretation of the fossil human record.

13 pages; International audience; ObjectivesStable isotope data provide insight into the reconstruction of ancient human diet. However, cooking may alter the original stable isotope compositions of food due to losses and modifications of biochemical and water components.MethodsTo address this issue, carbon, nitrogen and oxygen isotope ratios were measured on meat aliquots sampled from various animals such as pork, beef, duck and chicken, and also from the flesh of fishes such as salmon, European seabass, European pilchard, sole, gilt-head bream, and tuna. For each specimen, three pieces were cooked according to the three most commonly-known cooking practices: boiling, frying and roasting on…

research product

Spatio‐temporal patterns of tree growth as related to carbon isotope fractionation in European forests under changing climate

Aim The aim was to decipher Europe‐wide spatio‐temporal patterns of forest growth dynamics and their associations with carbon isotope fractionation processes inferred from tree rings as modulated by climate warming. Location Europe and North Africa (30‒70° N, 10° W‒35° E). Time period 1901‒2003. Major taxa studied Temperate and Euro‐Siberian trees. Methods We characterize changes in the relationship between tree growth and carbon isotope fractionation over the 20th century using a European network consisting of 20 site chronologies. Using indexed tree‐ring widths (TRWi), we assess shifts in the temporal coherence of radial growth across sites (synchrony) for five forest ecosystems (Atlantic…

research product

Water-use efficiency and transpiration across European forests during the Anthropocene

Considering the combined effects of CO2 fertilization and climate change drivers on plant physiology leads to a modest increase in simulated European forest transpiration in spite of the effects of CO2-induced stomatal closure. The Earth’s carbon and hydrologic cycles are intimately coupled by gas exchange through plant stomata1,2,3. However, uncertainties in the magnitude4,5,6 and consequences7,8 of the physiological responses9,10 of plants to elevated CO2 in natural environments hinders modelling of terrestrial water cycling and carbon storage11. Here we use annually resolved long-term δ13C tree-ring measurements across a European forest network to reconstruct the physiologically driven r…

research product