0000000000451273
AUTHOR
S.p. Jiang
Physico-chemical parameters determining hydration and particle interactions during the setting of silicate cements
Abstract Hydration of tricalcium silicate (Ca 3 SiO 5 ), the pure phase used as a model of the portland cements, is the chemical process leading to the formation of hydrates, while setting is a definite time event corresponding to the change of the paste from the soft to the hard state. Setting results from interactions between anhydrous or very partially hydrated particles. The analysis of these interactions leads to the identification of two fundamental steps: the coagulation of cement grains during the first minutes following the mixing and the rigidification of the coagulated structure which arises simultaneously with the acceleration of the calcium silicate hydrates (CSH) formation. …
Studies on mechanism and physico-chemical parameters at the origin of the cement setting. I. The fundamental processes involved during the cement setting
Abstract The mechanical evolution and the structure of the cement paste have been analysed in relation with the chemical evolution of the system. The setting process can be described as following two fundamental steps: the coagulation of cement grains during the first minutes following the mixing, and the rigidification of the coagulated structure which arises simultaneously with the acceleration of the hydrates formation During the coagulation step, the structure formed is proved to be mechanically reversible. The rigidification of the coagulated structure is provided by the hydrates formation in the contact zone. The increase of the paste cohesion at this stage is proportional to the quan…
Studies on mechanism and physico-chemical parameters at the origin of the cement setting II. Physico-chemical parameters determining the coagulation process
The physico-chemical parameters determining the coagulation of cements grains previously identified as the first fundamental process of cement setting have been investigated in diluted suspensions using an adapted granulometric method. The analysis of the influence of the ionic concentration in solution on the coagulation reveals that calcium concentration is the parameter which determines the particle interactions. There exists a minimum critical concentration of calcium ions in solution which is required to occur the coagulation of cement particles and a dispersive effect appears for very high concentrations. The results are discussed in relation with DLVO theory and specific interactions.