0000000000451692

AUTHOR

M. Kardouchi

showing 1 related works from this author

Using Fourier local magnitude in adaptive smoothness constraints in motion estimation

2007

Like many problems in image analysis, motion estimation is an ill-posed one, since the available data do not always sufficiently constrain the solution. It is therefore necessary to regularize the solution by imposing a smoothness constraint. One of the main difficulties while estimating motion is to preserve the discontinuities of the motion field. In this paper, we address this problem by integrating the motion magnitude information obtained by the Fourier analysis into the smoothness constraint, resulting in an adaptive smoothness. We describe how to achieve this with two different motion estimation approaches: the Horn and Schunck method and the Markov Random Field (MRF) modeling. The t…

Mathematical optimizationRandom fieldMarkov random fieldSmoothness (probability theory)ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONOptical flowConstraint (information theory)symbols.namesakeMotion fieldArtificial IntelligenceFourier analysisMotion estimationSignal ProcessingsymbolsComputer Vision and Pattern RecognitionAlgorithmSoftwareComputingMethodologies_COMPUTERGRAPHICSMathematicsPattern Recognition Letters
researchProduct