6533b81ffe1ef96bd1278510
RESEARCH PRODUCT
Using Fourier local magnitude in adaptive smoothness constraints in motion estimation
Franck MarzaniL. LegrandM. KardouchiAlbert Dipandasubject
Mathematical optimizationRandom fieldMarkov random fieldSmoothness (probability theory)ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONOptical flowConstraint (information theory)symbols.namesakeMotion fieldArtificial IntelligenceFourier analysisMotion estimationSignal ProcessingsymbolsComputer Vision and Pattern RecognitionAlgorithmSoftwareComputingMethodologies_COMPUTERGRAPHICSMathematicsdescription
Like many problems in image analysis, motion estimation is an ill-posed one, since the available data do not always sufficiently constrain the solution. It is therefore necessary to regularize the solution by imposing a smoothness constraint. One of the main difficulties while estimating motion is to preserve the discontinuities of the motion field. In this paper, we address this problem by integrating the motion magnitude information obtained by the Fourier analysis into the smoothness constraint, resulting in an adaptive smoothness. We describe how to achieve this with two different motion estimation approaches: the Horn and Schunck method and the Markov Random Field (MRF) modeling. The two smoothness constraints obtained are compared with standard solutions. Experimental results with synthetic and real-life image sequences show a significant improvement of motion estimation in both cases.
year | journal | country | edition | language |
---|---|---|---|---|
2007-07-01 | Pattern Recognition Letters |