0000000000451918

AUTHOR

Jürgen Burhenne

Expanding the chemical scope of RNA:methyltransferases to site-specific alkynylation of RNA for click labeling.

This work identifies the combination of enzymatic transfer and click labeling as an efficient method for the site-specific tagging of RNA molecules for biophysical studies. A double-activated analog of the ubiquitous co-substrate S-adenosyl-l-methionine was employed to enzymatically transfer a five carbon chain containing a terminal alkynyl moiety onto RNA. The tRNA:methyltransferase Trm1 transferred the extended alkynyl moiety to its natural target, the N2 of guanosine 26 in tRNA(Phe). LC/MS and LC/MS/MS techniques were used to detect and characterize the modified nucleoside as well as its cycloaddition product with a fluorescent azide. The latter resulted from a labeling reaction via Cu(I…

research product

A multifunctional bioconjugate module for versatile photoaffinity labeling and click chemistry of RNA

A multifunctional reagent based on a coumarin scaffold was developed for derivatization of naive RNA. The alkylating agent N3BC [7-azido-4-(bromomethyl)coumarin], obtained by Pechmann condensation, is selective for uridine. N3BC and its RNA conjugates are pre-fluorophores which permits controlled modular and stepwise RNA derivatization. The success of RNA alkylation by N3BC can be monitored by photolysis of the azido moiety, which generates a coumarin fluorophore that can be excited with UV light of 320 nm. The azidocoumarin-modified RNA can be flexibly employed in structure-function studies. Versatile applications include direct use in photo-crosslinking studies to cognate proteins, as dem…

research product

Detection of RNA modifications

RNA nucleotide modifications are typically of low abundance and frequently go unnoticed by standard detection methods of molecular biology and cell biology. With a burst of knowledge intruding from such diverse areas as genomics, structural biology, regulation of gene expression and immunology, it becomes increasingly clear that many exciting functions of nucleotide modifications remain to be explored. It follows in turn that the biology of nucleotide modification and editing is a field poised to rapidly gain importance in a variety of fields. The detection and analysis of nucleotide modifications present a clear limitation in this respect. Here, various methods for detection of nucleotide …

research product