0000000000456490

AUTHOR

S. Gabardi

showing 4 related works from this author

Influence of the exchange and correlation functional on the structure of amorphous InSb and In3SbTe2 compounds

2016

We have investigated the structural, vibrational, and electronic properties of the amorphous phase of InSb and In3SbTe2 compounds of interest for applications in phase change non-volatile memories. Models of the amorphous phase have been generated by quenching from the melt by molecular dynamics simulations based on density functional theory. In particular, we have studied the dependence of the structural properties on the choice of the exchange-correlation functional. It turns out that the use of the Becke-Lee-Yang-Parr functional provides models with a much larger fraction of In atoms in a tetrahedral bonding geometry with respect to previous results obtained with the most commonly used P…

10120 Department of Chemistrynon-volatile memoryYield (engineering)Theory of Condensed MatterGeneral Physics and Astronomy02 engineering and technologyElectronic structure01 natural sciencesMolecular dynamicsComputational chemistry540 Chemistry0103 physical sciencesPhysical and Theoretical Chemistry010306 general physicsamorphous materialFIS/03 - FISICA DELLA MATERIAQuenchingChemistry021001 nanoscience & nanotechnologyelectronic structure3100 General Physics and AstronomyAmorphous solidab-initio simulationChemical physicsMolecular vibrationTetrahedronDensity functional theory1606 Physical and Theoretical Chemistry0210 nano-technologyphase change material
researchProduct

Inverse simulated annealing: Improvements and application to amorphous InSb

2014

An improved inverse simulated annealing method is presented to determine the structure of complex disordered systems from first principles in agreement with available experimental data or desired predetermined target properties. The effectiveness of this method is demonstrated by revisiting the structure of amorphous InSb. The resulting network is mostly tetrahedral and in excellent agreement with available experimental data.

Materials scienceGeneral Computer ScienceGeneral Physics and AstronomyInverseFOS: Physical sciencesDisordered material02 engineering and technology01 natural sciencesMolecular physicsSimulated annealingCondensed Matter::Materials Science0103 physical sciencesGeneral Materials Science010306 general physicsStructure determinationFIS/03 - FISICA DELLA MATERIAQuenchingCondensed Matter - Materials ScienceInverse designExperimental dataMaterials Science (cond-mat.mtrl-sci)General ChemistryDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksComputational Physics (physics.comp-ph)021001 nanoscience & nanotechnologyAmorphous solidComputational MathematicsMechanics of MaterialsSimulated annealingTetrahedron0210 nano-technologyPhysics - Computational Physics
researchProduct

First principles simulation of amorphous InSb

2013

Ab initio molecular dynamics simulations based on density functional theory have been performed to generate a model of amorphous InSb by quenching from the melt. The resulting network is mostly tetrahedral with a minor fraction ($10%$) of atoms in a fivefold coordination. The structural properties are in good agreement with available x-ray diffraction and extended x-ray-absorption fine structure data and confirm the proposed presence of a sizable fraction of homopolar In-In and Sb-Sb bonds whose concentration in our model amounts to about $20%$ of the total number of bonds.

DiffractionQuenchingMaterials scienceCondensed matter physicsHomopolar motorCondensed Matter PhysicsMolecular physicsElectronic Optical and Magnetic MaterialsAmorphous solidAb initio molecular dynamicsab-initio simulations glasses amorphous materialsTetrahedronDensity functional theoryFIS/03 - FISICA DELLA MATERIA
researchProduct

First-principles study of the amorphous In3SbTe2phase change compound

2013

Ab initio molecular dynamics simulations based on density functional theory were performed to generate amorphous models of the phase change compound In${}_{3}$SbTe${}_{2}$ by quenching from the melt. In-Sb and In-Te are the most abundant bonds with only a minor fraction of Sb-Te bonds. The bonding geometry in the amorphous phase is, however, strongly dependent on the density in the range 6.448--5.75 g/cm${}^{3}$ that we investigated. While at high density the bonding geometry of In atoms is mostly octahedral-like as in the cubic crystalline phase of the ternary compound In${}_{3}$SbTe${}_{2}$, at low density we observed a sizable fraction of tetrahedral-like geometries similar to those pres…

QuenchingRange (particle radiation)Materials scienceTernary numeral systemCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsAmorphous solidCrystallographychemistry.chemical_compoundPhase changechemistryTernary compoundPhase (matter)Density functional theoryPhysical Review B
researchProduct