6533b828fe1ef96bd128846c
RESEARCH PRODUCT
Inverse simulated annealing: Improvements and application to amorphous InSb
Jan H. LosS. GabardiThomas D. KühneMarco Bernasconisubject
Materials scienceGeneral Computer ScienceGeneral Physics and AstronomyInverseFOS: Physical sciencesDisordered material02 engineering and technology01 natural sciencesMolecular physicsSimulated annealingCondensed Matter::Materials Science0103 physical sciencesGeneral Materials Science010306 general physicsStructure determinationFIS/03 - FISICA DELLA MATERIAQuenchingCondensed Matter - Materials ScienceInverse designExperimental dataMaterials Science (cond-mat.mtrl-sci)General ChemistryDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksComputational Physics (physics.comp-ph)021001 nanoscience & nanotechnologyAmorphous solidComputational MathematicsMechanics of MaterialsSimulated annealingTetrahedron0210 nano-technologyPhysics - Computational Physicsdescription
An improved inverse simulated annealing method is presented to determine the structure of complex disordered systems from first principles in agreement with available experimental data or desired predetermined target properties. The effectiveness of this method is demonstrated by revisiting the structure of amorphous InSb. The resulting network is mostly tetrahedral and in excellent agreement with available experimental data.
year | journal | country | edition | language |
---|---|---|---|---|
2014-10-04 |