0000000000457130

AUTHOR

V. Domingo

The intensity contrast of solar photospheric faculae and network elements : II. Evolution over the rising phase of solar cycle 23

We studied the radiative properties of small magnetic elements (active region faculae and the network) during the rising phase of solar cycle 23 from 1996 to 2001, determining their contrasts as a function of heliocentric angle, magnetogram signal, and the solar cycle phase. We combined near-simultaneous full disk images of the line-of-sight magnetic field and photospheric continuum intensity provided by the MDI instrument on board the SOHO spacecraft. Sorting the magnetogram signal into different ranges allowed us to distinguish between the contrast of different magnetic structures. We find that the contrast center-to-limb variation (CLV) of these small magnetic elements is independent of …

research product

Evolution of small-scale magnetic elements in the vicinity of granular-size swirl convective motions

Advances in solar instrumentation have led to a widespread usage of time series to study the dynamics of solar features, specially at small spatial scales and at very fast cadences. Physical processes at such scales are determinant as building blocks for many others occurring from the lower to the upper layers of the solar atmosphere and beyond, ultimately for understanding the bigger picture of solar activity. Ground-based (SST) and space-borne (Hinode) high-resolution solar data are analyzed in a quiet Sun region displaying negative polarity small-scale magnetic concentrations and a cluster of bright points observed in G-band and Ca II H images. The studied region is characterized by the …

research product

FULLY RESOLVED QUIET-SUN MAGNETIC FLUX TUBE OBSERVED WITH THE SUNRISE/IMAX INSTRUMENT

Until today, the small size of magnetic elements in quiet Sun areas has required the application of indirect methods, such as the line-ratio technique or multi-component inversions, to infer their physical properties. A consistent match to the observed Stokes profiles could only be obtained by introducing a magnetic filling factor that specifies the fraction of the observed pixel filled with magnetic field. Here, we investigate the properties of a small magnetic patch in the quiet Sun observed with the IMaX magnetograph on board the balloon-borne telescope Sunrise with unprecedented spatial resolution and low instrumental stray light. We apply an inversion technique based on the numerical s…

research product

Supersonic Magnetic Flows in the Quiet Sun

In this contribution we describe some recent observations of high-speed magnetized flows in the quiet Sun granulation. These observations were carried out with the Imaging Magnetograph eXperiment (IMaX) onboard the stratospheric balloon {\sc Sunrise}, and possess an unprecedented spatial resolution and temporal cadence. These flows were identified as highly shifted circular polarization (Stokes $V$) signals. We estimate the LOS velocity responsible for these shifts to be larger than 6 km s$^{-1}$, and therefore we refer to them as {\it supersonic magnetic flows}. The average lifetime of the detected events is 81.3 s and they occupy an average area of about 23\,000 km$^2$. Most of the events…

research product

Surface waves in solar granulation observed with {\sc Sunrise}

Solar oscillations are expected to be excited by turbulent flows in the intergranular lanes near the solar surface. Time series recorded by the IMaX instrument aboard the {\sc Sunrise} observatory reveal solar oscillations at high resolution, which allow studying the properties of oscillations with short wavelengths. We analyze two times series with synchronous recordings of Doppler velocity and continuum intensity images with durations of 32\thinspace min and 23\thinspace min, resp., recorded close to the disk center of the Sun to study the propagation and excitation of solar acoustic oscillations. In the Doppler velocity data, both the standing acoustic waves and the short-lived, high-deg…

research product

The polarimetric and helioseismic imager on solar orbiter

This paper describes the Polarimetric and Helioseismic Imager on the Solar Orbiter mission (SO/PHI), the first magnetograph and helioseismology instrument to observe the Sun from outside the Sun-Earth line. It is the key instrument meant to address the top-level science question: How does the solar dynamo work and drive connections between the Sun and the heliosphere? SO/PHI will also play an important role in answering the other top-level science questions of Solar Orbiter, as well as hosting the potential of a rich return in further science. SO/PHI measures the Zeeman effect and the Doppler shift in the FeI 617.3nm spectral line. To this end, the instrument carries out narrow-band imaging…

research product

Solar surface magnetism and irradiance on time scales

The uninterrupted measurement of the total solar irradiance during the last three solar cycles and an increasing amount of solar spectral irradiance measurements as well as solar imaging observations (magnetograms and photometric data) have stimulated the development of models attributing irradiance variations to solar surface magnetism. Here we review the current status of solar irradiance measurements and modelling efforts based on solar photospheric magnetic fields. Thereby we restrict ourselves to the study of solar variations from days to the solar cycle. Phenomenological models of the solar atmosphere in combination with imaging observations of solar electromagnetic radiation and meas…

research product

Structure of Small Magnetic Elements in the Solar Atmosphere

High resolution images at different wavelengths, spectrograms and magnetograms, representing different levels of the solar atmosphere obtained with Hinode have been combined to study the 3-dimensional structure of the small magnetic elements in relation to their radiance. A small magnetic element is described as example of the study.

research product

Supersonic Magnetic Upflows in Granular Cells Observed with Sunrise/IMaX

Using the IMaX instrument on-board the Sunrise stratospheric balloon-telescope we have detected extremely shifted polarization signals around the Fe I 5250.217 {\AA} spectral line within granules in the solar photosphere. We interpret the velocities associated with these events as corresponding to supersonic and magnetic upflows. In addition, they are also related to the appearance of opposite polarities and highly inclined magnetic fields. This suggests that they are produced by the reconnection of emerging magnetic loops through granular upflows. The events occupy an average area of 0.046 arcsec$^2$ and last for about 80 seconds, with larger events having longer lifetimes. These supersoni…

research product

Transverse component of the magnetic field in the solar photosphere observed by Sunrise

We present the first observations of the transverse component of photospheric magnetic field acquired by the imaging magnetograph Sunrise/IMaX. Using an automated detection method, we obtain statistical properties of 4536 features with significant linear polarization signal. Their rate of occurrence is 1-2 orders of magnitude larger than values reported by previous studies. We show that these features have no characteristic size or lifetime. They appear preferentially at granule boundaries with most of them being caught in downflow lanes at some point in their evolution. Only a small percentage are entirely and constantly embedded in upflows (16%) or downflows (8%).

research product

Magnetic field emergence in mesogranular-sized exploding granules observed with SUNRISE/IMaX data

We report on magnetic field emergences covering significant areas of exploding granules. The balloon-borne mission SUNRISE provided high spatial and temporal resolution images of the solar photosphere. Continuum images, longitudinal and transverse magnetic field maps and Dopplergrams obtained by IMaX onboard SUNRISE are analyzed by Local Correlation Traking (LCT), divergence calculation and time slices, Stokes inversions and numerical simulations are also employed. We characterize two mesogranular-scale exploding granules where $\sim$ 10$^{18}$ Mx of magnetic flux emerges. The emergence of weak unipolar longitudinal fields ($\sim$100 G) start with a single visible magnetic polarity, occupyi…

research product

Detection of vortex tubes in solar granulation from observations with Sunrise

We have investigated a time series of continuum intensity maps and corresponding Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar observatory Sunrise. We find that granules frequently show substructure in the form of lanes composed of a leading bright rim and a trailing dark edge, which move together from the boundary of a granule into the granule itself. We find strikingly similar events in synthesized intensity maps from an ab initio numerical simulation of solar surface convection. From cross sections through the computational domain of the simulation, we conclude that th…

research product

Solar Surface Magnetism and Irradiance on Time Scales from Days to the 11-Year Cycle

The uninterrupted measurement of the total solar irradiance during the last three solar cycles and an increasing amount of solar spectral irradiance measurements as well as solar imaging observations (magnetograms and photometric data) have stimulated the development of models attributing irradiance variations to solar surface magnetism. Here we review the current status of solar irradiance measurements and modelling efforts based on solar photospheric magnetic fields. Thereby we restrict ourselves to the study of solar variations from days to the solar cycle. Phenomenological models of the solar atmosphere in combination with imaging observations of solar electromagnetic radiation and meas…

research product

ACTINIDE AND ULTRA-HEAVY ABUNDANCES IN THE LOCAL GALACTIC COSMIC RAYS: AN ANALYSIS OF THE RESULTS FROM THELDEFULTRA-HEAVY COSMIC-RAY EXPERIMENT

The LDEF Ultra-Heavy Cosmic-Ray Experiment (UHCRE) detected Galactic cosmic rays (GCRs) of charge Z ≥ 70 in Earth orbit with an exposure factor of 170 m2 sr yr, much larger than any other experiment. The major results include the first statistically significant uniform sample of GCR actinides with 35 events passing quality cuts, evidence for the existence of transuranic nuclei in the GCR with one 96Cm candidate event, and a low 82Pb/78Pt ratio consistent with other experiments. The probability of the existence of a transuranic component is estimated as 96%, while the most likely 92U/90Th ratio is found to be 0.4 within a wide 70% confidence interval ranging from 0 to 0.96. Overall, the resu…

research product

Convectively driven vortex flows in the Sun

We have discovered small whirlpools in the Sun, with a size similar to the terrestrial hurricanes (<~0.5 Mm). The theory of solar convection predicts them, but they had remained elusive so far. The vortex flows are created at the downdrafts where the plasma returns to the solar interior after cooling down, and we detect them because some magnetic bright points (BPs) follow a logarithmic spiral in their way to be engulfed by a downdraft. Our disk center observations show 0.009 vortexes per Mm^2, with a lifetime of the order of 5 min, and with no preferred sense of rotation. They are not evenly spread out over the surface, but they seem to trace the supergranulation and the mesogranulation. T…

research product

Spatial distribution and statistical properties of small-scale convective vortex-like motions in a quiet-Sun region

High-resolution observations of a quiet Sun internetwork region taken with the Solar 1-m Swedish Telescope in La Palma are analyzed. We determine the location of small-scale vortex motions in the solar photospheric region by computing the horizontal proper motions of small-scale structures on time series of images. These plasma convectively-driven swirl motions are associated to: (1) downdrafts (that have been commonly explained as corresponding to sites where the plasma is cooled down and hence returned to the interior below the visible photospheric level), and (2) horizontal velocity vectors converging into a central point. The sink cores are proved to be the final destination of passive …

research product

SUNRISE/IMaX observations of convectively driven vortex flows in the Sun

We characterize the observational properties of the convectively driven vortex flows recently discovered on the quiet Sun, using magnetograms, Dopplergrams and images obtained with the 1-m balloon-borne Sunrise telescope. By visual inspection of time series, we find some 3.1e-3 vortices/(Mm^2 min), which is a factor of 1.7 larger than previous estimates. The mean duration of the individual events turns out to be 7.9 min, with a standard deviation of 3.2 min. In addition, we find several events appearing at the same locations along the duration of the time series (31.6 min). Such recurrent vortices show up in the proper motion flow field map averaged over the time series. The typical vertica…

research product

Observations of vortex motion in the solar photosphere using HINODE-SP data

In this work, we focus in the magnetic evolution of a small region as seen by Hinode-SP during the time interval of about one hour. High-cadence LOS magnetograms and velocity maps were derived, allowing the study of different small-scale processes such as the formation/disappearance of bright points accompanying the evolution of an observed convective vortical motion.

research product

Evidence of small-scale magnetic concentrations dragged by vortex motion of solar photospheric plasma

Vortex-type motions have been measured by tracking bright points in high-resolution observations of the solar photosphere. These small-scale motions are thought to be determinant in the evolution of magnetic footpoints and their interaction with plasma and therefore likely to play a role in heating the upper solar atmosphere by twisting magnetic flux tubes. We report the observation of magnetic concentrations being dragged towards the center of a convective vortex motion in the solar photosphere from high-resolution ground-based and space-borne data. We describe this event by analyzing a series of images at different solar atmospheric layers. By computing horizontal proper motions, we detec…

research product