Triple-Quantum Two-Dimensional 27Al Magic Angle Nuclear Magnetic Resonance Study of the Aluminum Incorporation in Calcium Silicate Hydrates
Triple-quantum two-dimensional 27Al magic angle spinning nuclear magnetic resonance (27Al 3Q-MAS NMR) was used to characterize the substitution of Si4+ by Al3+ into the Te−Oc−Te structure of calcium silicate hydrates (C−S−H). This substitution was studied with C−S−H having an Oc/Te ratio of 1 and in equilibrium with Al(OH)3 in aqueous suspensions. In the absence of NaOH, no substitution into the C−S−H structure occurred. Addition of NaOH in the preparation increased the concentration of Al(OH)4- and favored substitution. The deficit of charge resulting from this substitution was compensated by the accommodation of sodium in the interlayer space of the C−S−H. Increasing levels of substituted…