0000000000459709

AUTHOR

Marius Peters

Emission of Rhodamine B in PMMA opals for luminescent solar concentrators

In conventional luminescent solar concentrators (LSC) incident light is absorbed by luminophores and emitted isotropically. Most of the emitted light is trapped inside the LSC by total internal reflection and guided to solar cells at the edges. Light emitted towards the surfaces, however, is lost in the escape cone. Furthermore, when the luminophore emits light in its absorption range, light is lost due to reabsorption. To overcome these losses, we embed the luminescent material in photonic structures to influence the emission characteristics. Directional and spectral redistribution of emission is supposed to enhance the light guiding in LSCs and reduce reabsorption losses. For this purpose…

research product

Inverted-opal photonic crystals for ultra light-trapping in solar cells

We investigated a three dimensional inverted opal having the potential to notably increase light-trapping in solar cells. The 3D photonic crystal top layer is an angle- and direction-selective filter, which decreases the acceptance cone of the solar cell. Numerical optimisation methods are used to verify the optical and electrical properties for a large angluar and energy spectrum for a system consisting of an inverted opal on top of a thin crystalline silicon solar cell. It is numerically shown that an inverted opal grown in the Τ - Xdirection might fulfill the requirement for such a filter. An estimate for the theoretically achievable efficiency for nonconcentrated light is presented that…

research product

Rear Side Diffractive Gratings for Silicon Wafer Solar Cells

research product

3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell

The concept of 3D photonic intermediate reflectors for micromorph silicon tandem solar cells has been investigated. In thin-film silicon tandem solar cells consisting of amorphous and microcrystalline silicon with two junctions of a-Si/μc-Si, efficiency enhancements can be achieved by increasing the current density in the a-Si top cell. It is one goal to provide an optimized current matching at high current densities. For an ideal photon-management between top and bottom cell, a spectrally selective intermediate reflective layer (IRL) is necessary, which is less dependent of the angle of incidence than state-of-the-art thickness dependent massive interlayers. The design, preparation and cha…

research product

Cooperativity of H-bonding and anion–π interaction in the binding of anions with neutral π-acceptors

A rare anion-π complex between bromide and a neutral receptor is reported and related receptor systems are studied with a series of anions. The interaction is observed in the solid state and in solution, and further evidence for it is obtained by a computational study.

research product

Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies

In this study we present a theoretical and experimental analy- sis of the application of photonic band stop filters on top of photovoltaic fluorescent concentrators in order to increase the photon collection efficiency. The light guiding effect of the fluorescent concentrator relies on total internal reflection. The escape cone of total internal reflection is their major loss mechanism. Our ray tracing simulation allows to calculate the beneficial effect of photonic band stop reflection filters, which reduce these losses, and to simulate the angular distribu- tion of the light trapped in the concentrator. We present simula- tions of the optical properties of 1D and 3D photonic structures an…

research product