0000000000461362
AUTHOR
Fabio Pazzaglia
The ARROWS project: adapting and developing robotics technologies for underwater archaeology
4th IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles, NGCUV 2015; Girona; Spain; 28 April 2015 through 30 April 2015
Robust Selective Stereo SLAM without Loop Closure and Bundle Adjustment
This paper presents a novel stereo SLAM framework, where a robust loop chain matching scheme for tracking keypoints is combined with an effective frame selection strategy. The proposed approach, referred to as selective SLAM (SSLAM), relies on the observation that the error in the pose estimation propagates from the uncertainty of the three-dimensional points. This is higher for distant points, corresponding to matches with low temporal flow disparity in the images. Comparative results based on the reference KITTI evaluation framework show that SSLAM is effective and can be implemented efficiently, as it does not require any loop closure or bundle adjustment.
SAMSLAM: Simulated Annealing Monocular SLAM
This paper proposes a novel monocular SLAM approach. For a triplet of successive keyframes, the approach inteleaves the registration of the three 3D maps associated to each image pair in the triplet and the refinement of the corresponding poses, by progressively limiting the allowable reprojection error according to a simulated annealing scheme. This approach computes only local overlapping maps of almost constant size, thus avoiding problems of 3D map growth. It does not require global optimization, loop closure and back-correction of the poses.
Piecewise planar underwater mosaicing
A commonly ignored problem in planar mosaics, yet often present in practice, is the selection of a reference homography reprojection frame where to attach the successive image frames of the mosaic. A bad choice for the reference frame can lead to severe distortions in the mosaic and can degenerate in incorrect configurations after some sequential frame concatenations. This problem is accentuated in uncontrolled underwater acquisition setups as those provided by AUVs or ROVs due to both the noisy trajectory of the acquisition vehicle — with roll and pitch shakes — and to the non-flat nature of the seabed which tends to break the planarity assumption implicit in the mosaic construction. These…
Design of a modular Autonomous Underwater Vehicle for archaeological investigations
MARTA (MARine Tool for Archaeology) is a modular AUV (Autonomous Underwater Vehicle) designed and developed by the University of Florence in the framework of the ARROWS (ARchaeological RObot systems for the World's Seas) FP7 European project. The ARROWS project challenge is to provide the underwater archaeologists with technological tools for cost affordable campaigns: i.e. ARROWS adapts and develops low cost AUV technologies to significantly reduce the cost of archaeological operations, covering the full extent of an archaeological campaign (underwater mapping, diagnosis and cleaning tasks). The tools and methodologies developed within ARROWS comply with the "Annex" of the 2001 UNESCO Conv…