0000000000465045

AUTHOR

Jacques Jupille

showing 9 related works from this author

Defect States at theTiO2(110)Surface Probed by Resonant Photoelectron Diffraction

2008

The charge distribution of the defect states at the reduced ${\mathrm{TiO}}_{2}(110)$ surface is studied via a new method, the resonant photoelectron diffraction. The diffraction pattern from the defect state, excited at the $\mathrm{Ti}\mathrm{\text{\ensuremath{-}}}2p\mathrm{\text{\ensuremath{-}}}3d$ resonance, is analyzed in the forward scattering approach and on the basis of multiple scattering calculations. The defect charge is found to be shared by several surface and subsurface Ti sites with the dominant contribution on a specific subsurface site in agreement with density functional theory calculations.

DiffractionMaterials scienceScatteringForward scatterGeneral Physics and AstronomyCharge densityCharge (physics)02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesResonance (particle physics)0104 chemical sciencesExcited stateDensity functional theoryAtomic physics0210 nano-technologyPhysical Review Letters
researchProduct

Intrinsic Nature of the Excess Electron Distribution at theTiO2(110)Surface

2012

The gap state that appears upon reduction of TiO2 plays a key role in many of titania's interesting properties but its origin and spatial localization have remained unclear. In the present work, the TiO2(110) surface is reduced in a chemically controlled way by sodium adsorption. By means of resonant photoelectron diffraction, excess electrons are shown to be distributed mainly on subsurface Ti sites strikingly similar to the defective TiO2(110) surface, while any significant contribution from interstitial Ti ions is discarded. In agreement with first principles calculations, these findings demonstrate that the distribution of the band gap charge is an intrinsic property of TiO2(110), indep…

DiffractionWork (thermodynamics)AnataseMaterials scienceBand gapGeneral Physics and Astronomychemistry.chemical_element02 engineering and technologyElectron021001 nanoscience & nanotechnology01 natural sciencesIonAdsorptionchemistryChemical physics0103 physical sciencesAtomic physics010306 general physics0210 nano-technologyTitaniumPhysical Review Letters
researchProduct

Interpretation of absorption edges by resonant electronic spectroscopy: experiment and theory

2004

Abstract Resonant electronic spectroscopy consists in measuring a non-radiative decay process (Auger or autoionization process) excited with photon energies around an absorption edge. The resonant spectra carry information both on the nature of the electronic transitions near the absorption edge by scanning the very first empty orbitals above the Fermi level (through the absorption process), and, on the other hand, on the atomic electronic configuration through the lineshape of the observed decay process. In this paper, after a quick review of the pioneering works in this field, we show that resonant measurements and their theoretical modeling can be used to precisely interpret complex abso…

RadiationAbsorption spectroscopyChemistryFermi levelCondensed Matter PhysicsElectron spectroscopyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsResonant inelastic X-ray scatteringsymbols.namesakeAutoionizationAbsorption edgesymbolsPhysical and Theoretical ChemistryAtomic physicsSpectroscopyAbsorption (electromagnetic radiation)SpectroscopyJournal of Electron Spectroscopy and Related Phenomena
researchProduct

Intra-atomic versus interatomic process in resonant Auger spectra at the TiL23edges in rutile

2001

The two components of the Ti ${L}_{23}{M}_{23}V$ Auger transition recorded on a stoichiometric rutile crystal are identified as ${L}_{2}{M}_{23}V$ and ${L}_{3}{M}_{23}V$ contributions. This assignment is evidenced by concordant data relative to resonances of the LMV decay at the Ti ${L}_{23}$ thresholds and to Auger emission recorded in coincidence with the ${2}_{1/2}$ and ${2}_{3/2}$ photoemission at a photon energy far above the Ti ${L}_{23}$ edges. The ${L}_{3}{M}_{23}V$ transition is shown to follow either the direct photoexcitation of a ${2}_{3/2}$ electron or the fast Coster-Kronig decay of a ${2}_{1/2}$ photohole. Although specific LMV contributions related to valence orbitals are id…

CrystalPhysicsValence (chemistry)Atomic orbitalElectronPhoton energyAtomic physicsElectron spectroscopySpectral lineAugerPhysical Review B
researchProduct

Stoichiometry-related Auger lineshapes in titanium oxides: Influence of valence-band profile and of Coster-Kronig processes

2004

International audience; The ability to determine the nature and the occurrence of defects is a central need of ceramic surface chemistry. In titanium oxides, the Ti-LMV Auger decays line shape is very sensitive to the titanium degree of oxidation, and has long been empirically used as a qualitative probe of the stoichiometry. In the present work, resonant Auger and resonant valence-band measurements at the Ti-L2,3 edges in TiO2, TiO2–x and metallic titanium provide a clear evidence that the evolutions of the Ti-LMV Auger line shape are due to drastic changes in the valence-band profile and in the probability of L2L3V Coster-Kronig decay processes when a fraction of titanium ions is reduced.…

PACS: 71.20.-b 32.80.Hd 77.84.Bw 82.80.Pvoxidationchemistry.chemical_element02 engineering and technologyceramics01 natural sciencesElectron spectroscopy71.20.-b; 32.80.Hd; 77.84.Bw; 82.80.PvIonAugerX-RAY-ABSORPTION; SURFACE-DEFECTS; RUTILE TIO2; Resonant AugerMetalsymbols.namesakephotoelectron spectra0103 physical sciencesRUTILE TIO2titanium010306 general physicstitanium compoundsAuger electron spectroscopyFermi levelvalence bandsResonant Auger021001 nanoscience & nanotechnologyCondensed Matter PhysicsSURFACE-DEFECTSElectronic Optical and Magnetic Materialsstoichiometrychemistryvisual_artX-RAY-ABSORPTIONsymbolsvisual_art.visual_art_mediumFermi levelspectral line breadthAuger electron spectraAtomic physics0210 nano-technologyStoichiometryTitanium
researchProduct

The defined adsorption site of sodium on the TiO2(110)–(1×1) surface

2004

The adsorption site of sodium on the TiO2(1 1 0)–(1 × 1) surface was studied by extended X-ray absorption fine structure. For coverage ranging between 0.25 and 0.5 ML, we find that sodium is on an ‘in-between' site where it is bound to two bridging oxygen atoms at 2.25 Å and one in-plane oxygen atom at 2.40 Å, in full agreement with DFT calculations. At higher coverage the site becomes an hollow site where the sodium atom is equidistant to the three oxygen atoms at 2.30 Å, while metallic sodium clusters are also formed at the surface.

Alkali metalsSodiumInorganic chemistrychemistry.chemical_element02 engineering and technologyExtended X-ray absorption fine structure (EXAFS)01 natural sciencesOxygenMetalAdsorption0103 physical sciencesAtomMaterials Chemistry010306 general physicsTitanium oxideExtended X-ray absorption fine structureChemistrySurfaces and Interfaces021001 nanoscience & nanotechnologyCondensed Matter PhysicsAlkali metalSurfaces Coatings and FilmsCrystallographyvisual_artvisual_art.visual_art_mediumAbsorption (chemistry)0210 nano-technologySurface Science
researchProduct

Hard X-ray resonant electronic spectroscopy in transition metal oxides

2005

K-edge X-ray absorption and 2p-XPS spectra of 3d-element oxides present spectral features which cannot be explained within a simple one-electron model. These features reveal the fine electronic structure of transition metal (TM) oxides valence states resulting from hybridized TM-3d and O-2p states, and the correlations between these valence electrons. In this paper, we show how resonant electronic spectroscopy (resonant Auger or resonant photoelectron spectroscopy) around the TM K-edge can be used to interpret the structures of the threshold and, with the help of theoretical calculation, to determine the electronic configuration of the excited ion. Quadrupolar transitions towards localized …

PhysicsNuclear and High Energy PhysicsAuger electron spectroscopyX-ray absorption spectroscopyValence (chemistry)XASOxidesElectronic structureElectron spectroscopyAuger spectroscopyCondensed Matter::Materials ScienceX-ray photoelectron spectroscopy32.80.Hd; 61.10.Ht; 71.20.BeCondensed Matter::Strongly Correlated ElectronsElectron configurationAtomic physicsValence electronPhotoemissionInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Excess Electrons at Oxide Surfaces

2015

Excess electrons profoundly affect the properties of oxide surfaces. The present review deals with excess charges on rutile and anatase. These much studied titania polymorphs open with strong prospects regarding (photo)catalysis and dye-sensitized solar cells. In the complex landscape of the mechanisms of electron trapping and electron transfer toward adsorbates, excess electrons open with flexible model systems which are the focus of an extensive research effort.

AnataseMaterials scienceOxideElectronlaw.inventionCatalysisElectron transferchemistry.chemical_compoundchemistryRutilelawChemical physicsScanning tunneling microscopeElectron paramagnetic resonance
researchProduct

QUADRUPOLAR CHARACTER OF THE Ti K-EDGE PREPEAKS IN TiO2 BY RESONANT AUGER

2002

Resonant spectroscopies offer a new opportunity to get more insight into excited electronic states by studying line shapes and intensities of decay processes. For photon excitations in the pre-K-edge region, the Ti KL 2,3 L 2,3 Auger spectra in TiO 2 show additional peaks when an electron is promoted in localized d-like states via a quadrupolar transition. This resonant process is used to unravel the respective contributions of quadrupolar and dipolar transitions to the absorption edge prepeaks.

PhotonChemistrySurfaces and InterfacesElectronCondensed Matter PhysicsSpectral lineSurfaces Coatings and FilmsAugerDipoleK-edgeAbsorption edgeMaterials ChemistryAtomic physicsLine (formation)Surface Review and Letters
researchProduct