0000000000465101
AUTHOR
Nader Sanai
Enhanced tissue penetration of antibodies through pressurized immunohistochemistry
ABSTRACTTo address the inefficiency of passive diffusion for antibody penetration in thick tissue samples, which limits clearing-technique applications, we developed a versatile and simple device to perform antibody incubation under increased barometric pressure. Pressurized immunohistochemistry greatly improves the uniformity, intensity, and depth of fluorescent immunostaining in thick human and mouse brain samples. Furthermore, pressurized immunohistochemistry substantially decreases the time required for classic staining of thin sections.SUBMISSION CATEGORYNew Results
Bi- and uniciliated ependymal cells define continuous floor-plate-derived tanycytic territories
Multiciliated ependymal (E1) cells line the brain ventricles and are essential for brain homeostasis. We previously identified in the lateral ventricles a rare ependymal subpopulation (E2) with only two cilia and unique basal bodies. Here we show that E2 cells form a distinct biciliated epithelium extending along the ventral third into the fourth ventricle. In the third ventricle floor, apical profiles with only primary cilia define an additional uniciliated (E3) epithelium. E2 and E3 cells' ultrastructure, marker expression and basal processes indicate that they correspond to subtypes of tanycytes. Using sonic hedgehog lineage tracing, we show that the third and fourth ventricle E2 and E3 …
Comment on "Human Neuroblasts Migrate to the Olfactory Bulb via a Lateral Ventricular Extension"
Curtis et al . (Research Articles, 2 March 2007, p. 1243) claimed discovery of a human neuronal migratory stream to the olfactory bulb along a putative lateral ventricular extension. However, high levels of proliferation reported with proliferating cell nuclear antigen were not confirmed using different markers, neuronal chain migration was not demonstrated, and no serial reconstruction shows a true ventricular extension.
The human brain subventricular zone: stem cells in this niche and its organization.
The human brain harbors stem cells in the subventricular zone (SVZ). The authors have collected postmortem and intraoperative tissue from adult human patients and found that it contains a unique ribbon of astrocytes that proliferate in vivo and can function as neural stem cells in vitro. Furthermore, they have conducted an anatomic, cytoarchitectural, and ultrastructural study in complete postmortem brains to define the precise organization of the lateral walls of the human lateral ventricles. With immunohistochemistry, the authors mapped a proliferative glial fibrillary acidic protein (GFAP)--positive ribbon of astrocytic cells in the human SVZ. In this article, the authors report on four …
Cellular composition and cytoarchitecture of the adult human subventricular zone: A niche of neural stem cells
The lateral wall of the lateral ventricle in the human brain contains neural stem cells throughout adult life. We conducted a cytoarchitectural and ultrastructural study in complete postmortem brains (n = 7) and in postmortem (n = 42) and intraoperative tissue (n = 43) samples of the lateral walls of the human lateral ventricles. With varying thickness and cell densities, four layers were observed throughout the lateral ventricular wall: a monolayer of ependymal cells (Layer I), a hypocellular gap (Layer II), a ribbon of cells (Layer III) composed of astrocytes, and a transitional zone (Layer IV) into the brain parenchyma. Unlike rodents and nonhuman primates, adult human glial fibrillary a…
Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration
The subventricular zone (SVZ) is a principal source of adult neural stem cells in the rodent brain, generating thousands of olfactory bulb neurons every day. If the adult human brain contains a comparable germinal region, this could have considerable implications for future neuroregenerative therapy. Stem cells have been isolated from the human brain, but the identity, organization and function of adult neural stem cells in the human SVZ are unknown. Here we describe a ribbon of SVZ astrocytes lining the lateral ventricles of the adult human brain that proliferate in vivo and behave as multipotent progenitor cells in vitro. This astrocytic ribbon has not been observed in other vertebrates s…