0000000000466246

AUTHOR

Silvia Erla

An identifiable model to assess frequency-domain Granger causality in the presence of significant instantaneous interactions

We present a new approach for the investigation of Granger causality in the frequency domain by means of the partial directed coherence (PDC). The approach is based on the utilization of an extended multivariate autoregressive (MVAR) model, including instantaneous effects in addition to the lagged effects traditionally studied, to fit the observed multiple time series prior to PDC computation. Model identification is performed combining standard MVAR coefficient estimation with a recent technique for instantaneous causal modeling based on independent component analysis. The approach is first validated on simulated MVAR processes showing that, in the presence of instantaneous effects, only t…

research product

A framework for assessing frequency domain causality in physiological time series with instantaneous effects.

We present an approach for the quantification of directional relations in multiple time series exhibiting significant zero-lag interactions. To overcome the limitations of the traditional multivariate autoregressive (MVAR) modelling of multiple series, we introduce an extended MVAR (eMVAR) framework allowing either exclusive consideration of time-lagged effects according to the classic notion of Granger causality, or consideration of combined instantaneous and lagged effects according to an extended causality definition. The spectral representation of the eMVAR model is exploited to derive novel frequency domain causality measures that generalize to the case of instantaneous effects the kno…

research product

Compensating for instantaneous signal mixing in transfer entropy analysis of neurobiological time series

The transfer entropy (TE) has recently emerged as a nonlinear model-free tool, framed in information theory, to detect directed interactions in coupled processes. Unfortunately, when applied to neurobiological time series TE is biased by signal cross-talk due to volume conduction. To compensate for this bias, in this study we introduce a modified TE measure which accounts for possible instantaneous effects between the analyzed time series. The new measure, denoted as compensated TE (cTE), is tested on simulated time series reproducing conditions typical of neuroscience applications, and on real magnetoencephalographic (MEG) multi-trial data measured during a visuo-tactile cognitive experime…

research product

Robust estimation of partial directed coherence by the vector optimal parameter search algorithm

We propose a method for the accurate estimation of Partial Directed Coherence (PDC) from multichannel time series. The method is based on multivariate vector autoregressive (MVAR) model identification performed through the recently proposed Vector Optimal Parameter Search (VOPS) algorithm. Using Monte Carlo simulations generated by different MVAR models, the proposed VOPS algorithm is compared with the traditional Vector Least Squares (VLS) identification method. We show that the VOPS provides more accurate PDC estimates than the VLS (either overall and single-arc errors) in presence of interactions with long delays and missing terms, and for noisy multichannel time series. ©2009 IEEE.

research product

k-Nearest neighbour local linear prediction of scalp EEG activity during intermittent photic stimulation

The characterization of the EEG response to photic stimulation (PS) is an important issue with significant clinical relevance. This study aims to quantify and map the complexity of the EEG during PS, where complexity is measured as the degree of unpredictability resulting from local linear prediction. EEG activity was recorded with eyes closed (EC) and eyes open (EO) during resting and PS at 5, 10, and 15. Hz in a group of 30 healthy subjects and in a case-report of a patient suffering from cerebral ischemia. The mean squared prediction error (MSPE) resulting from k-nearest neighbour local linear prediction was calculated in each condition as an index of EEG unpredictability. The linear or …

research product

Measuring Connectivity in Linear Multivariate Processes: Definitions, Interpretation, and Practical Analysis

This tutorial paper introduces a common framework for the evaluation of widely used frequency-domain measures of coupling (coherence, partial coherence) and causality (directed coherence, partial directed coherence) from the parametric representation of linear multivariate (MV) processes. After providing a comprehensive time-domain definition of the various forms of connectivity observed in MV processes, we particularize them to MV autoregressive (MVAR) processes and derive the corresponding frequency-domain measures. Then, we discuss the theoretical interpretation of these MVAR-based connectivity measures, showing that each of them reflects a specific time-domain connectivity definition an…

research product

Detecting nonlinear causal interactions between dynamical systems by non-uniform embedding of multiple time series.

This study introduces a new approach for the detection of nonlinear Granger causality between dynamical systems. The approach is based on embedding the multivariate (MV) time series measured from the systems X and Y by means of a sequential, non-uniform procedure, and on using the corrected conditional entropy (CCE) as unpredictability measure. The causal coupling from X to Y is quantified as the relative decrease of CCE measured after allowing the series of X to enter the embedding procedure for the description of Y. The ability of the approach to quantify nonlinear causality is assessed on MV time series measured from simulated dynamical systems with unidirectional coupling (the Rössler-…

research product

Quantifying the complexity of short-term heart period variability through K nearest neighbor local linear prediction

The complexity of short-term heart period (HP) variability was quantified exploiting the paradigm that associates the degree of unpredictability of a time series to its dynamical complexity. Complexity was assessed through k-nearest neighbor local linear prediction. A proper selection of the parameter k allowed us to perform either linear or nonlinear prediction, and the comparison of the two approaches to infer the presence of nonlinear dynamics. The method was validated on simulations reproducing linear and nonlinear time series with varying levels of predictability. It was then applied to HP variability series measured from healthy subjects during head-up tilt test, showing that short-te…

research product

Multivariate EEG spectral analysis evidences the functional link between motor and visual cortex during integrative sensorimotor tasks

The identification of the networks connecting brain areas and the understanding of their role in executing complex tasks is a crucial issue in cognitive neuroscience. In this study, specific visuomotor tasks were devised to reveal the functional network underlying the cooperation process between visual and motor regions. Electroencephalography (EEG) data were recorded from twelve healthy subjects during a combined visuomotor task, which integrated precise grip motor commands with sensory visual feedback (VM). This condition was compared with control tasks involving pure motor action (M), pure visual perception (V) and visuomotor performance without feedback (V + M). Multivariate parametric …

research product

Quantifying changes in EEG complexity induced by photic stimulation.

Summary Objectives: This study aims to characterize EEG complexity, measured as the prediction error resulting from nonlinear prediction, in healthy humans during photic stimulation. Methods: EEGs were recorded from 15 subjects with eyes closed (EC) and eyes open (EO), during the baseline condition and during stroboscopic photic stimulation (PS) at 5, 10, and 15 Hz. The mean squared prediction error (MSPE) resulting from nearest neighbor local linear prediction was taken as complexity index. Complexity maps were generated interpolating the MSPE index over a schematic scalp representation. Results: Statistical analysis revealed that: i) EEG shows good predictability in all conditions and see…

research product

Studying brain visuo-tactile integration through cross-spectral analysis of human MEG recordings

An important aim in cognitive neuroscience is to identify the networks connecting different brain areas and their role in executing complex tasks. In this study, visuo-tactile tasks were employed to assess the functional correlation underlying the cooperation process between visual and tactile regions. MEG data were recorded from eight healthy subjects while performing a visual, a tactile, and a visuo-tactile task. To define regions of interest (ROIs), event-related fields (ERFs) were estimated from MEG data related to visual and tactile areas. The ten channels with the highest increase in ERF variance, moving from rest to task, were selected. Cross-spectral analysis was then performed to a…

research product