0000000000466410

AUTHOR

Rembert A. Duine

Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide.

Spintronics relies on the transport of spins, the intrinsic angular momentum of electrons, as an alternative to the transport of electron charge as in conventional electronics. The long-term goal of spintronics research is to develop spin-based, low-dissipation computing-technology devices. Recently, long-distance transport of a spin current was demonstrated across ferromagnetic insulators1. However, antiferromagnetically ordered materials, the most common class of magnetic materials, have several crucial advantages over ferromagnetic systems for spintronics applications2: antiferromagnets have no net magnetic moment, making them stable and impervious to external fields, and can be operated…

research product

Phenomenology of current-induced skyrmion motion in antiferromagnets

We study current-driven skyrmion motion in uniaxial thin film antiferromagnets in the presence of the Dzyaloshinskii-Moriya interactions and in an external magnetic field. We phenomenologically include relaxation and current-induced torques due to both spin-orbit coupling and spatially inhomogeneous magnetic textures in the equation for the N\'eel vector of the antiferromagnet. Using the collective coordinate approach we apply the theory to a two-dimensional antiferromagnetic skyrmion and estimate the skyrmion velocity under an applied DC electric current.

research product

Propagation Length of Antiferromagnetic Magnons Governed by Domain Configurations.

Spintronics seeks to functionalize antiferromagnetic materials to develop memory and logic devices operating at terahertz speed and robust against external magnetic field perturbations. To be useful, such functionality needs to be developed in thin film devices. The key functionality of long-distance spin-transport has, however, so far only been reported in bulk single crystal antiferromagnets, while in thin films, transport has so far been limited to a few nanometers. In this work, we electrically achieve a long-distance propagation of spin-information in thin films of the insulating antiferromagnet hematite. Through transport and magnetic imaging, we demonstrate a strong correlation betwe…

research product

Anisotropies and magnetic phase transitions in insulating antiferromagnets determined by a Spin-Hall magnetoresistance probe

Antiferromagnets possess a number of intriguing and promising properties for electronic devices, which include a vanishing net magnetic moment and thus insensitivity to large magnetic fields and characteristic terahertz frequency dynamics. However, probing the antiferromagnetic ordering is challenging without synchrotron-based facilities. Here, we determine the material parameters of the insulating iron oxide hematite, α-Fe2O3, using the surface sensitive spin-Hall magnetoresistance (SMR). Combined with a simple analytical model, we extract the antiferromagnetic anisotropies and the bulk Dzyaloshinskii-Moriya field over a wide range of temperatures and magnetic fields. Across the Morin phas…

research product

Dzyaloshinskii-Moriya Interaction and Hall Effects in the Skyrmion Phase ofMn1−xFexGe

We carry out density functional theory calculations which demonstrate that the electron dynamics in the Skyrmion phase of Fe-rich Mn_{1-x}Fe_{x}Ge alloys is governed by Berry phase physics. We observe that the magnitude of the Dzyaloshinskii-Moriya interaction directly related to the mixed space-momentum Berry phases, changes sign and magnitude with concentration x in direct correlation with the data of Shibata et al. [Nat. Nanotechnol. 8, 723 (2013)]. The computed anomalous and topological Hall effects in FeGe are also in good agreement with available experiments. We further develop a simple tight-binding model able to explain these findings. Finally, we show that the adiabatic Berry phase…

research product

Zero-frequency chiral magnonic edge states protected by non-equilibrium topology

Topological bosonic excitations must, in contrast to their fermionic counterparts, appear at finite energies. This is a key challenge for magnons, as it prevents straightforward excitation and detection of topologically-protected magnonic edge states and their use in magnonic devices. In this work, we show that in a non-equilibrium state, in which the magnetization is pointing against the external magnetic field, the topologically-protected chiral edge states in a magnon Chern insulator can be lowered to zero frequency, making them directly accessible by existing experimental techniques. We discuss the spin-transfer torque required to stabilize this non-equilibrium state, and show explicitl…

research product