Nonradial normalized solutions for nonlinear scalar field equations
We study the following nonlinear scalar field equation $$ -\Delta u=f(u)-\mu u, \quad u \in H^1(\mathbb{R}^N) \quad \text{with} \quad \|u\|^2_{L^2(\mathbb{R}^N)}=m. $$ Here $f\in C(\mathbb{R},\mathbb{R})$, $m>0$ is a given constant and $\mu\in\mathbb{R}$ is a Lagrange multiplier. In a mass subcritical case but under general assumptions on the nonlinearity $f$, we show the existence of one nonradial solution for any $N\geq4$, and obtain multiple (sometimes infinitely many) nonradial solutions when $N=4$ or $N\geq6$. In particular, all these solutions are sign-changing.
Nonlinear scalar field equations with general nonlinearity
Consider the nonlinear scalar field equation \begin{equation} \label{a1} -\Delta{u}= f(u)\quad\text{in}~\mathbb{R}^N,\qquad u\in H^1(\mathbb{R}^N), \end{equation} where $N\geq3$ and $f$ satisfies the general Berestycki-Lions conditions. We are interested in the existence of positive ground states, of nonradial solutions and in the multiplicity of radial and nonradial solutions. Very recently Mederski [30] made a major advance in that direction through the development, in an abstract setting, of a new critical point theory for constrained functionals. In this paper we propose an alternative, more elementary approach, which permits to recover Mederski's results on the scalar field equation. T…