0000000000467049

AUTHOR

Sheng-sen Lu

0000-0002-9115-5328

showing 2 related works from this author

Nonradial normalized solutions for nonlinear scalar field equations

2018

We study the following nonlinear scalar field equation $$ -\Delta u=f(u)-\mu u, \quad u \in H^1(\mathbb{R}^N) \quad \text{with} \quad \|u\|^2_{L^2(\mathbb{R}^N)}=m. $$ Here $f\in C(\mathbb{R},\mathbb{R})$, $m>0$ is a given constant and $\mu\in\mathbb{R}$ is a Lagrange multiplier. In a mass subcritical case but under general assumptions on the nonlinearity $f$, we show the existence of one nonradial solution for any $N\geq4$, and obtain multiple (sometimes infinitely many) nonradial solutions when $N=4$ or $N\geq6$. In particular, all these solutions are sign-changing.

Applied Mathematics010102 general mathematicsMathematical analysisMathematics::Analysis of PDEsGeneral Physics and AstronomyStatistical and Nonlinear Physics01 natural sciences010101 applied mathematicsNonlinear systemsymbols.namesakeMathematics - Analysis of PDEsLagrange multiplierFOS: Mathematicssymbols[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsConstant (mathematics)Scalar fieldComputingMilieux_MISCELLANEOUS35J60 58E05Mathematical PhysicsAnalysis of PDEs (math.AP)MathematicsNonlinearity
researchProduct

Nonlinear scalar field equations with general nonlinearity

2018

Consider the nonlinear scalar field equation \begin{equation} \label{a1} -\Delta{u}= f(u)\quad\text{in}~\mathbb{R}^N,\qquad u\in H^1(\mathbb{R}^N), \end{equation} where $N\geq3$ and $f$ satisfies the general Berestycki-Lions conditions. We are interested in the existence of positive ground states, of nonradial solutions and in the multiplicity of radial and nonradial solutions. Very recently Mederski [30] made a major advance in that direction through the development, in an abstract setting, of a new critical point theory for constrained functionals. In this paper we propose an alternative, more elementary approach, which permits to recover Mederski's results on the scalar field equation. T…

Pure mathematicsMathematics::Analysis of PDEsMonotonic function2010 MSC: 35J20 35J6001 natural sciencesMathematics - Analysis of PDEsFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mountain pass0101 mathematicsMathematicsgeographygeography.geographical_feature_category35J20 35J60Applied Mathematics010102 general mathematicsMultiplicity (mathematics)Monotonicity trickNonradial solutions010101 applied mathematicsNonlinear systemBerestycki-Lions nonlinearityBounded functionNonlinear scalar field equationsScalar fieldAnalysisAnalysis of PDEs (math.AP)
researchProduct