6533b828fe1ef96bd1287a86

RESEARCH PRODUCT

Nonlinear scalar field equations with general nonlinearity

Sheng-sen LuLouis Jeanjean

subject

Pure mathematicsMathematics::Analysis of PDEsMonotonic function2010 MSC: 35J20 35J6001 natural sciencesMathematics - Analysis of PDEsFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mountain pass0101 mathematicsMathematicsgeographygeography.geographical_feature_category35J20 35J60Applied Mathematics010102 general mathematicsMultiplicity (mathematics)Monotonicity trickNonradial solutions010101 applied mathematicsNonlinear systemBerestycki-Lions nonlinearityBounded functionNonlinear scalar field equationsScalar fieldAnalysisAnalysis of PDEs (math.AP)

description

Consider the nonlinear scalar field equation \begin{equation} \label{a1} -\Delta{u}= f(u)\quad\text{in}~\mathbb{R}^N,\qquad u\in H^1(\mathbb{R}^N), \end{equation} where $N\geq3$ and $f$ satisfies the general Berestycki-Lions conditions. We are interested in the existence of positive ground states, of nonradial solutions and in the multiplicity of radial and nonradial solutions. Very recently Mederski [30] made a major advance in that direction through the development, in an abstract setting, of a new critical point theory for constrained functionals. In this paper we propose an alternative, more elementary approach, which permits to recover Mederski's results on the scalar field equation. The keys to our approach are an extension to the symmetric mountain pass setting of the monotonicity trick, and a new decomposition result for bounded Palais-Smale sequences.

10.1016/j.na.2019.111604http://arxiv.org/abs/1807.07350