0000000000467050

AUTHOR

Louis Jeanjean

0000-0002-7864-0900

showing 7 related works from this author

Nonradial normalized solutions for nonlinear scalar field equations

2018

We study the following nonlinear scalar field equation $$ -\Delta u=f(u)-\mu u, \quad u \in H^1(\mathbb{R}^N) \quad \text{with} \quad \|u\|^2_{L^2(\mathbb{R}^N)}=m. $$ Here $f\in C(\mathbb{R},\mathbb{R})$, $m>0$ is a given constant and $\mu\in\mathbb{R}$ is a Lagrange multiplier. In a mass subcritical case but under general assumptions on the nonlinearity $f$, we show the existence of one nonradial solution for any $N\geq4$, and obtain multiple (sometimes infinitely many) nonradial solutions when $N=4$ or $N\geq6$. In particular, all these solutions are sign-changing.

Applied Mathematics010102 general mathematicsMathematical analysisMathematics::Analysis of PDEsGeneral Physics and AstronomyStatistical and Nonlinear Physics01 natural sciences010101 applied mathematicsNonlinear systemsymbols.namesakeMathematics - Analysis of PDEsLagrange multiplierFOS: Mathematicssymbols[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsConstant (mathematics)Scalar fieldComputingMilieux_MISCELLANEOUS35J60 58E05Mathematical PhysicsAnalysis of PDEs (math.AP)MathematicsNonlinearity
researchProduct

A priori bounds and multiplicity of solutions for an indefinite elliptic problem with critical growth in the gradient

2019

Let $\Omega \subset \mathbb R^N$, $N \geq 2$, be a smooth bounded domain. We consider a boundary value problem of the form $$-\Delta u = c_{\lambda}(x) u + \mu(x) |\nabla u|^2 + h(x), \quad u \in H^1_0(\Omega)\cap L^{\infty}(\Omega)$$ where $c_{\lambda}$ depends on a parameter $\lambda \in \mathbb R$, the coefficients $c_{\lambda}$ and $h$ belong to $L^q(\Omega)$ with $q>N/2$ and $\mu \in L^{\infty}(\Omega)$. Under suitable assumptions, but without imposing a sign condition on any of these coefficients, we obtain an a priori upper bound on the solutions. Our proof relies on a new boundary weak Harnack inequality. This inequality, which is of independent interest, is established in the gener…

Pure mathematicsApplied MathematicsGeneral Mathematics010102 general mathematicsMultiplicity (mathematics)01 natural sciencesUpper and lower bounds010101 applied mathematicsMathematics - Analysis of PDEsBounded functionFOS: MathematicsA priori and a posteriori[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Boundary value problem0101 mathematicsComputingMilieux_MISCELLANEOUSAnalysis of PDEs (math.AP)35A23 35B45 35J25 35J92Harnack's inequalityMathematics
researchProduct

Nonlinear scalar field equations with general nonlinearity

2018

Consider the nonlinear scalar field equation \begin{equation} \label{a1} -\Delta{u}= f(u)\quad\text{in}~\mathbb{R}^N,\qquad u\in H^1(\mathbb{R}^N), \end{equation} where $N\geq3$ and $f$ satisfies the general Berestycki-Lions conditions. We are interested in the existence of positive ground states, of nonradial solutions and in the multiplicity of radial and nonradial solutions. Very recently Mederski [30] made a major advance in that direction through the development, in an abstract setting, of a new critical point theory for constrained functionals. In this paper we propose an alternative, more elementary approach, which permits to recover Mederski's results on the scalar field equation. T…

Pure mathematicsMathematics::Analysis of PDEsMonotonic function2010 MSC: 35J20 35J6001 natural sciencesMathematics - Analysis of PDEsFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mountain pass0101 mathematicsMathematicsgeographygeography.geographical_feature_category35J20 35J60Applied Mathematics010102 general mathematicsMultiplicity (mathematics)Monotonicity trickNonradial solutions010101 applied mathematicsNonlinear systemBerestycki-Lions nonlinearityBounded functionNonlinear scalar field equationsScalar fieldAnalysisAnalysis of PDEs (math.AP)
researchProduct

Strong Instability of Ground States to a Fourth Order Schrödinger Equation

2019

Abstract In this note, we prove the instability by blow-up of the ground state solutions for a class of fourth order Schrödinger equations. This extends the first rigorous results on blowing-up solutions for the biharmonic nonlinear Schrödinger due to Boulenger and Lenzmann [8] and confirm numerical conjectures from [1–3, 11].

General Mathematics010102 general mathematicsMathematics::Analysis of PDEs01 natural sciencesInstabilitySchrödinger equationsymbols.namesakeNonlinear systemFourth ordersymbolsBiharmonic equation[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsGround stateSchrödinger's catComputingMilieux_MISCELLANEOUSMathematicsMathematical physicsSciences exactes et naturelles
researchProduct

Multiple positive normalized solutions for nonlinear Schrödinger systems

2018

We consider the existence of multiple positive solutions to the nonlinear Schr\"odinger systems sets on $H^1(\mathbb{R}^N) \times H^1(\mathbb{R}^N)$, \[ \left\{ \begin{aligned} -\Delta u_1 &= \lambda_1 u_1 + \mu_1 |u_1|^{p_1 -2}u_1 + \beta r_1 |u_1|^{r_1-2} u_1|u_2|^{r_2}, -\Delta u_2 &= \lambda_2 u_2 + \mu_2 |u_2|^{p_2 -2}u_2 + \beta r_2 |u_1|^{r_1} |u_2|^{r_2 -2} u_2, \end{aligned} \right. \] under the constraint \[ \int_{\mathbb{R}^N}|u_1|^2 \, dx = a_1,\quad \int_{\mathbb{R}^N}|u_2|^2 \, dx = a_2. \] Here $a_1, a_2 >0$ are prescribed, $\mu_1, \mu_2, \beta>0$, and the frequencies $\lambda_1, \lambda_2$ are unknown and will appear as Lagrange multipliers. Two cases are studied, the first …

geographygeography.geographical_feature_categoryApplied Mathematics010102 general mathematicsGeneral Physics and AstronomyStatistical and Nonlinear Physics01 natural sciences010101 applied mathematicsStanding waveSet (abstract data type)Constraint (information theory)Nonlinear systemsymbols.namesakeMathematics - Analysis of PDEsCompact spaceLagrange multipliersymbolsApplied mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mountain pass0101 mathematicsMathematical PhysicsSchrödinger's catComputingMilieux_MISCELLANEOUSMathematics
researchProduct

Normalized solutions to the mixed dispersion nonlinear Schr��dinger equation in the mass critical and supercritical regime

2019

In this paper, we study the existence of solutions to the mixed dispersion nonlinear Schrödinger equation γΔ2u − Δu + αu =

Applied MathematicsGeneral Mathematics010102 general mathematics01 natural sciencesSupercritical fluid010101 applied mathematicssymbols.namesakeMathématiquesMathematics - Analysis of PDEsEquations différentielles et aux dérivées partiellesQuantum electrodynamicsDispersion (optics)symbolsFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsAnalyse mathématiqueNonlinear Schrödinger equationComputingMilieux_MISCELLANEOUSMathematicsAnalysis of PDEs (math.AP)
researchProduct

Multiple normalized solutions for a Sobolev critical Schrödinger-Poisson-Slater equation

2021

We look for solutions to the Schr\"{o}dinger-Poisson-Slater equation $$- \Delta u + \lambda u - \gamma (|x|^{-1} * |u|^2) u - a |u|^{p-2}u = 0 \quad \text{in} \quad \mathbb{R}^3, $$ which satisfy \begin{equation*} \int_{\mathbb{R}^3}|u|^2 \, dx = c \end{equation*} for some prescribed $c>0$. Here $ u \in H^1(\mathbb{R}^3)$, $\gamma \in \mathbb{R},$ $ a \in \mathbb{R}$ and $p \in (\frac{10}{3}, 6]$. When $\gamma >0$ and $a > 0$, both in the Sobolev subcritical case $p \in (\frac{10}{3}, 6)$ and in the Sobolev critical case $p=6$, we show that there exists a $c_1>0$ such that, for any $c \in (0,c_1)$, the equation admits two solutions $u_c^+$ and $u_c^-$ which can be characterized respectively…

Applied Mathematics010102 general mathematics16. Peace & justicePoisson distribution01 natural sciences010101 applied mathematicsSobolev spaceCombinatoricssymbols.namesakeMathematics - Analysis of PDEsCritical point (thermodynamics)symbols[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsAnalysisSchrödinger's catEnergy functionalMathematics
researchProduct