6533b835fe1ef96bd129f50e

RESEARCH PRODUCT

Strong Instability of Ground States to a Fourth Order Schrödinger Equation

Louis JeanjeanDenis BonheureDenis BonheureTianxiang GouTianxiang GouJean-baptiste CasterasJean-baptiste Casteras

subject

General Mathematics010102 general mathematicsMathematics::Analysis of PDEs01 natural sciencesInstabilitySchrödinger equationsymbols.namesakeNonlinear systemFourth ordersymbolsBiharmonic equation[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsGround stateSchrödinger's catComputingMilieux_MISCELLANEOUSMathematicsMathematical physicsSciences exactes et naturelles

description

Abstract In this note, we prove the instability by blow-up of the ground state solutions for a class of fourth order Schrödinger equations. This extends the first rigorous results on blowing-up solutions for the biharmonic nonlinear Schrödinger due to Boulenger and Lenzmann [8] and confirm numerical conjectures from [1–3, 11].

10.1093/imrn/rnx273http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/266859