0000000000567883

AUTHOR

Tianxiang Gou

showing 4 related works from this author

Existence and orbital stability of standing waves to nonlinear Schr��dinger system with partial confinement

2018

We are concerned with the existence of solutions to the following nonlinear Schr\"odinger system in $\mathbb{R}^3$: \begin{equation*} \left\{ \begin{aligned} -\Delta u_1 + (x_1^2+x_2^2)u_1&= \lambda_1 u_1 + \mu_1 |u_1|^{p_1 -2}u_1 + \beta r_1|u_1|^{r_1-2}u_1|u_2|^{r_2}, \\ -\Delta u_2 + (x_1^2+x_2^2)u_2&= \lambda_2 u_2 + \mu_2 |u_2|^{p_2 -2}u_2 +\beta r_2 |u_1|^{r_1}|u_2|^{r_2 -2}u_2, \end{aligned} \right. \end{equation*} under the constraint \begin{align*} \int_{\mathbb{R}^3}|u_1|^2 \, dx = a_1>0,\quad \int_{\mathbb{R}^3}|u_2|^2 \, dx = a_2>0, \end{align*} where $\mu_1, \mu_2, \beta >0, 2 1, r_1 + r_2 < \frac{10}{3}$. In the system, the parameters $\lambda_1, \lambda_2 \in \R$ are unknown …

PhysicsSequence010102 general mathematicsStatistical and Nonlinear Physics01 natural sciencesSchrödinger equation010101 applied mathematicsConstraint (information theory)symbols.namesakeNonlinear systemCompact spaceMathematics - Analysis of PDEsLagrange multiplier35J50 35J60symbolsFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsComputingMilieux_MISCELLANEOUSMathematical PhysicsSchrödinger's catMathematical physicsEnergy functionalAnalysis of PDEs (math.AP)
researchProduct

Strong Instability of Ground States to a Fourth Order Schrödinger Equation

2019

Abstract In this note, we prove the instability by blow-up of the ground state solutions for a class of fourth order Schrödinger equations. This extends the first rigorous results on blowing-up solutions for the biharmonic nonlinear Schrödinger due to Boulenger and Lenzmann [8] and confirm numerical conjectures from [1–3, 11].

General Mathematics010102 general mathematicsMathematics::Analysis of PDEs01 natural sciencesInstabilitySchrödinger equationsymbols.namesakeNonlinear systemFourth ordersymbolsBiharmonic equation[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsGround stateSchrödinger's catComputingMilieux_MISCELLANEOUSMathematicsMathematical physicsSciences exactes et naturelles
researchProduct

Multiple positive normalized solutions for nonlinear Schrödinger systems

2018

We consider the existence of multiple positive solutions to the nonlinear Schr\"odinger systems sets on $H^1(\mathbb{R}^N) \times H^1(\mathbb{R}^N)$, \[ \left\{ \begin{aligned} -\Delta u_1 &= \lambda_1 u_1 + \mu_1 |u_1|^{p_1 -2}u_1 + \beta r_1 |u_1|^{r_1-2} u_1|u_2|^{r_2}, -\Delta u_2 &= \lambda_2 u_2 + \mu_2 |u_2|^{p_2 -2}u_2 + \beta r_2 |u_1|^{r_1} |u_2|^{r_2 -2} u_2, \end{aligned} \right. \] under the constraint \[ \int_{\mathbb{R}^N}|u_1|^2 \, dx = a_1,\quad \int_{\mathbb{R}^N}|u_2|^2 \, dx = a_2. \] Here $a_1, a_2 >0$ are prescribed, $\mu_1, \mu_2, \beta>0$, and the frequencies $\lambda_1, \lambda_2$ are unknown and will appear as Lagrange multipliers. Two cases are studied, the first …

geographygeography.geographical_feature_categoryApplied Mathematics010102 general mathematicsGeneral Physics and AstronomyStatistical and Nonlinear Physics01 natural sciences010101 applied mathematicsStanding waveSet (abstract data type)Constraint (information theory)Nonlinear systemsymbols.namesakeMathematics - Analysis of PDEsCompact spaceLagrange multipliersymbolsApplied mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mountain pass0101 mathematicsMathematical PhysicsSchrödinger's catComputingMilieux_MISCELLANEOUSMathematics
researchProduct

Normalized solutions to the mixed dispersion nonlinear Schr��dinger equation in the mass critical and supercritical regime

2019

In this paper, we study the existence of solutions to the mixed dispersion nonlinear Schrödinger equation γΔ2u − Δu + αu =

Applied MathematicsGeneral Mathematics010102 general mathematics01 natural sciencesSupercritical fluid010101 applied mathematicssymbols.namesakeMathématiquesMathematics - Analysis of PDEsEquations différentielles et aux dérivées partiellesQuantum electrodynamicsDispersion (optics)symbolsFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsAnalyse mathématiqueNonlinear Schrödinger equationComputingMilieux_MISCELLANEOUSMathematicsAnalysis of PDEs (math.AP)
researchProduct