0000000000567883
AUTHOR
Tianxiang Gou
Existence and orbital stability of standing waves to nonlinear Schr��dinger system with partial confinement
We are concerned with the existence of solutions to the following nonlinear Schr\"odinger system in $\mathbb{R}^3$: \begin{equation*} \left\{ \begin{aligned} -\Delta u_1 + (x_1^2+x_2^2)u_1&= \lambda_1 u_1 + \mu_1 |u_1|^{p_1 -2}u_1 + \beta r_1|u_1|^{r_1-2}u_1|u_2|^{r_2}, \\ -\Delta u_2 + (x_1^2+x_2^2)u_2&= \lambda_2 u_2 + \mu_2 |u_2|^{p_2 -2}u_2 +\beta r_2 |u_1|^{r_1}|u_2|^{r_2 -2}u_2, \end{aligned} \right. \end{equation*} under the constraint \begin{align*} \int_{\mathbb{R}^3}|u_1|^2 \, dx = a_1>0,\quad \int_{\mathbb{R}^3}|u_2|^2 \, dx = a_2>0, \end{align*} where $\mu_1, \mu_2, \beta >0, 2 1, r_1 + r_2 < \frac{10}{3}$. In the system, the parameters $\lambda_1, \lambda_2 \in \R$ are unknown …
Strong Instability of Ground States to a Fourth Order Schrödinger Equation
Abstract In this note, we prove the instability by blow-up of the ground state solutions for a class of fourth order Schrödinger equations. This extends the first rigorous results on blowing-up solutions for the biharmonic nonlinear Schrödinger due to Boulenger and Lenzmann [8] and confirm numerical conjectures from [1–3, 11].
Multiple positive normalized solutions for nonlinear Schrödinger systems
We consider the existence of multiple positive solutions to the nonlinear Schr\"odinger systems sets on $H^1(\mathbb{R}^N) \times H^1(\mathbb{R}^N)$, \[ \left\{ \begin{aligned} -\Delta u_1 &= \lambda_1 u_1 + \mu_1 |u_1|^{p_1 -2}u_1 + \beta r_1 |u_1|^{r_1-2} u_1|u_2|^{r_2}, -\Delta u_2 &= \lambda_2 u_2 + \mu_2 |u_2|^{p_2 -2}u_2 + \beta r_2 |u_1|^{r_1} |u_2|^{r_2 -2} u_2, \end{aligned} \right. \] under the constraint \[ \int_{\mathbb{R}^N}|u_1|^2 \, dx = a_1,\quad \int_{\mathbb{R}^N}|u_2|^2 \, dx = a_2. \] Here $a_1, a_2 >0$ are prescribed, $\mu_1, \mu_2, \beta>0$, and the frequencies $\lambda_1, \lambda_2$ are unknown and will appear as Lagrange multipliers. Two cases are studied, the first …
Normalized solutions to the mixed dispersion nonlinear Schr��dinger equation in the mass critical and supercritical regime
In this paper, we study the existence of solutions to the mixed dispersion nonlinear Schrödinger equation γΔ2u − Δu + αu =