0000000000471067

AUTHOR

Anders Björn

showing 10 related works from this author

The tusk condition and Petrovski criterion for the normalized $p\mspace{1mu}$-parabolic equation

2017

We study boundary regularity for the normalized $p\mspace{1mu}$-parabolic equation in arbitrary bounded domains. Effros and Kazdan (Indiana Univ. Math. J. 20 (1970), 683-693) showed that the so-called tusk condition guarantees regularity for the heat equation. We generalize this result to the normalized $p\mspace{1mu}$-parabolic equation, and also obtain H\"older continuity. The tusk condition is a parabolic version of the exterior cone condition. We also obtain a sharp Petrovski criterion for the regularity of the latest moment of a domain. This criterion implies that the regularity of a boundary point is affected if one side of the equation is multiplied by a constant.

Primary: 35K61 Secondary: 35B30 35B51 35D40 35K92Mathematics - Analysis of PDEsMathematics::Analysis of PDEsFOS: MathematicsAnalysis of PDEs (math.AP)
researchProduct

Boundary Regularity for the Porous Medium Equation

2018

We study the boundary regularity of solutions to the porous medium equation $u_t = \Delta u^m$ in the degenerate range $m>1$. In particular, we show that in cylinders the Dirichlet problem with positive continuous boundary data on the parabolic boundary has a solution which attains the boundary values, provided that the spatial domain satisfies the elliptic Wiener criterion. This condition is known to be optimal, and it is a consequence of our main theorem which establishes a barrier characterization of regular boundary points for general -- not necessarily cylindrical -- domains in ${\bf R}^{n+1}$. One of our fundamental tools is a new strict comparison principle between sub- and superpara…

Pure mathematicsComplex systemBoundary (topology)Mathematical AnalysisCharacterization (mathematics)01 natural sciencesMathematics - Analysis of PDEsMathematics (miscellaneous)Matematisk analysporous medium equationFOS: Mathematics0101 mathematicsSpatial domainMathematicsosittaisdifferentiaaliyhtälötDirichlet problemMechanical Engineering010102 general mathematicsDegenerate energy levels35K20 (Primary) 35B51 35B65 35K10 35K55 35K65 (Secondary)010101 applied mathematicsRange (mathematics)boundary regularityPorous mediumAnalysisAnalysis of PDEs (math.AP)Archive for Rational Mechanics and Analysis
researchProduct

Sharp capacity estimates for annuli in weighted R^n and in metric spaces

2017

We obtain estimates for the nonlinear variational capacity of annuli in weighted R^n and in metric spaces. We introduce four different (pointwise) exponent sets, show that they all play fundamental roles for capacity estimates, and also demonstrate that whether an end point of an exponent set is attained or not is important. As a consequence of our estimates we obtain, for instance, criteria for points to have zero (resp. positive) capacity. Our discussion holds in rather general metric spaces, including Carnot groups and many manifolds, but it is just as relevant on weighted R^n. Indeed, to illustrate the sharpness of our estimates, we give several examples of radially weighted R^n, which …

31C45 (Primary) 30C65 30L99 31B15 31C15 31E0 (Secondary)annulusmetric spacequasiconformal mappingMathematical Analysisexponent setsp-admissible weightSobolev spaceradial weightMathematics - Analysis of PDEsAnnulus; Doubling measure; Exponent sets; Metric space; Newtonian space; p-admissible weight; Poincare inequality; Quasiconformal mapping; Radial weight; Sobolev space; Variational capacityMatematisk analysPoincaré inequalitydoubling measureFOS: MathematicsNewtonian spacevariational capacityAnalysis of PDEs (math.AP)
researchProduct

Volume growth, capacity estimates, p-parabolicity and sharp integrability properties of p-harmonic Green functions

2023

In a complete metric space equipped with a doubling measure supporting a $p$-Poincar\'e inequality, we prove sharp growth and integrability results for $p$-harmonic Green functions and their minimal $p$-weak upper gradients. We show that these properties are determined by the growth of the underlying measure near the singularity. Corresponding results are obtained also for more general $p$-harmonic functions with poles, as well as for singular solutions of elliptic differential equations in divergence form on weighted $\mathbf{R}^n$ and on manifolds. The proofs are based on a new general capacity estimate for annuli, which implies precise pointwise estimates for $p$-harmonic Green functions…

Mathematics - Analysis of PDEsGeneral MathematicsFOS: MathematicsPrimary: 31C45 Secondary: 30L99 31C12 31C15 31E05 35J08 35J92 46E36 49Q20AnalysisAnalysis of PDEs (math.AP)Journal d'Analyse Mathématique
researchProduct

The annular decay property and capacity estimates for thin annuli

2016

We obtain upper and lower bounds for the nonlinear variational capacity of thin annuli in weighted $\mathbf{R}^n$ and in metric spaces, primarily under the assumptions of an annular decay property and a Poincar\'e inequality. In particular, if the measure has the $1$-annular decay property at $x_0$ and the metric space supports a pointwise $1$-Poincar\'e inequality at $x_0$, then the upper and lower bounds are comparable and we get a two-sided estimate for thin annuli centred at $x_0$, which generalizes the known estimate for the usual variational capacity in unweighted $\mathbf{R}^n$. Most of our estimates are sharp, which we show by supplying several key counterexamples. We also character…

Pure mathematicsProperty (philosophy)General Mathematicsthin annulusPoincaré inequality01 natural sciencesMeasure (mathematics)Upper and lower boundssymbols.namesakeMathematics - Analysis of PDEsMathematics - Metric Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsMathematicsPointwiseApplied Mathematics010102 general mathematicsmetric spaceMetric Geometry (math.MG)31E05 (Primary) 30L99 31C15 31C45 (Secondary)kapasiteettiSobolev spaceSobolev spaceNonlinear systemMetric spaceannular decay propertyPoincaré inequalitydoubling measuresymbolsupper gradient010307 mathematical physicsweighted RnAnalysis of PDEs (math.AP)Newtonian spacevariational capacity
researchProduct

Nonlinear balayage on metric spaces

2009

We develop a theory of balayage on complete doubling metric measure spaces supporting a Poincaré inequality. In particular, we are interested in continuity and p-harmonicity of the balayage. We also study connections to the obstacle problem. As applications, we characterize regular boundary points and polar sets in terms of balayage. Original Publication:Anders Björn, Jana Björn, Tero Mäkäläinen and Mikko Parviainen, Nonlinear balayage on metric spaces, 2009, Nonlinear Analysis, (71), 5-6, 2153-2171.http://dx.doi.org/10.1016/j.na.2009.01.051Copyright: Elsevier Science B.V., Amsterdam.http://www.elsevier.com/

Pure mathematicsMatematikBalayageApplied MathematicsMathematical analysisPoincaré inequalityBoundary (topology)Measure (mathematics)symbols.namesakeMetric spaceMetric (mathematics)Obstacle problemsymbolsBalayage; Boundary regularity; Continuity; Doubling measure; Metric space; Nonlinear; Obstacle problem; Perron solution; p-harmonic; Polar set; Poincaré inequality; Potential theory; SuperharmonicAnalysisMathematicsMathematicsPolar set (potential theory)
researchProduct

Boundary regularity for degenerate and singular parabolic equations

2013

We characterise regular boundary points of the parabolic $p$-Laplacian in terms of a family of barriers, both when $p>2$ and $1<p<2$. Due to the fact that $p\not=2$, it turns out that one can multiply the $p$-Laplace operator by a positive constant, without affecting the regularity of a boundary point. By constructing suitable families of barriers, we give some simple geometric conditions that ensure the regularity of boundary points.

Mathematics - Analysis of PDEsSimple (abstract algebra)Applied MathematicsDegenerate energy levelsMathematical analysis35K20 31B25 35B65 35K65 35K67 35K92FOS: MathematicsBoundary (topology)Mathematics::Spectral TheoryParabolic partial differential equationAnalysisMathematicsAnalysis of PDEs (math.AP)
researchProduct

Existence and almost uniqueness for p -harmonic Green functions on bounded domains in metric spaces

2020

We study ($p$-harmonic) singular functions, defined by means of upper gradients, in bounded domains in metric measure spaces. It is shown that singular functions exist if and only if the complement of the domain has positive capacity, and that they satisfy very precise capacitary identities for superlevel sets. Suitably normalized singular functions are called Green functions. Uniqueness of Green functions is largely an open problem beyond unweighted $\mathbf{R}^n$, but we show that all Green functions (in a given domain and with the same singularity) are comparable. As a consequence, for $p$-harmonic functions with a given pole we obtain a similar comparison result near the pole. Various c…

Pure mathematicsCapacitary potential; Doubling measure; Metric space; p-harmonic Green function; Poincar? inequality; Singular function31C45 (Primary) 30L99 31C15 31E05 35J92 49Q20 (Secondary)Harmonic (mathematics)Mathematical Analysis01 natural sciencesMeasure (mathematics)Domain (mathematical analysis)Mathematics - Analysis of PDEscapacitary potentialMatematisk analysFOS: MathematicsUniqueness0101 mathematicsMathematicsComplement (set theory)p-harmonicApplied Mathematics010102 general mathematicsmetric spacemetriset avaruudet010101 applied mathematicsMetric spacePoincaré inequalityBounded functionMetric (mathematics)doubling measurepotentiaaliteoriasingular functiongreen functionAnalysisAnalysis of PDEs (math.AP)
researchProduct

Sharp capacity estimates for annuli in weighted $$\mathbf {R}^n$$ R n and in metric spaces

2016

We obtain estimates for the nonlinear variational capacity of annuli in weighted $$\mathbf {R}^n$$ and in metric spaces. We introduce four different (pointwise) exponent sets, show that they all play fundamental roles for capacity estimates, and also demonstrate that whether an end point of an exponent set is attained or not is important. As a consequence of our estimates we obtain, for instance, criteria for points to have zero (resp. positive) capacity. Our discussion holds in rather general metric spaces, including Carnot groups and many manifolds, but it is just as relevant on weighted $$\mathbf {R}^n$$ . Indeed, to illustrate the sharpness of our estimates, we give several examples of …

PointwiseMathematics(all)Pure mathematicsEnd pointGeneral Mathematics010102 general mathematicsZero (complex analysis)01 natural sciences010101 applied mathematicsSet (abstract data type)Metric spaceNonlinear systemsymbols.namesakesymbolsExponent0101 mathematicsCarnot cycleMathematicsMathematische Zeitschrift
researchProduct

The tusk condition and Petrovskiĭ criterion for the normalized p‐parabolic equation

2019

We study boundary regularity for the normalized p-parabolic equation in arbitrary bounded domains. Effros and Kazdan (Indiana Univ. Math. J. 20 (1970) 683-693) showed that the so-called tusk condit ...

010101 applied mathematicsGeneral MathematicsBounded functionvisual_art010102 general mathematicsMathematical analysisTuskvisual_art.visual_art_mediumBoundary (topology)0101 mathematics01 natural sciencesMathematicsJournal of the London Mathematical Society
researchProduct