6533b7defe1ef96bd1276699

RESEARCH PRODUCT

Boundary Regularity for the Porous Medium Equation

Anders BjörnJana BjörnUgo GianazzaJuhana Siljander

subject

Pure mathematicsComplex systemBoundary (topology)Mathematical AnalysisCharacterization (mathematics)01 natural sciencesMathematics - Analysis of PDEsMathematics (miscellaneous)Matematisk analysporous medium equationFOS: Mathematics0101 mathematicsSpatial domainMathematicsosittaisdifferentiaaliyhtälötDirichlet problemMechanical Engineering010102 general mathematicsDegenerate energy levels35K20 (Primary) 35B51 35B65 35K10 35K55 35K65 (Secondary)010101 applied mathematicsRange (mathematics)boundary regularityPorous mediumAnalysisAnalysis of PDEs (math.AP)

description

We study the boundary regularity of solutions to the porous medium equation $u_t = \Delta u^m$ in the degenerate range $m>1$. In particular, we show that in cylinders the Dirichlet problem with positive continuous boundary data on the parabolic boundary has a solution which attains the boundary values, provided that the spatial domain satisfies the elliptic Wiener criterion. This condition is known to be optimal, and it is a consequence of our main theorem which establishes a barrier characterization of regular boundary points for general -- not necessarily cylindrical -- domains in ${\bf R}^{n+1}$. One of our fundamental tools is a new strict comparison principle between sub- and superparabolic functions, which makes it essential for us to study both nonstrict and strict Perron solutions to be able to develop a fruitful boundary regularity theory. Several other comparison principles and pasting lemmas are also obtained. In the process we obtain a rather complete picture of the relation between sub/super\-para\-bolic functions and weak sub/super\-solu\-tions.

https://doi.org/10.1007/s00205-018-1251-3