0000000000350290
AUTHOR
Juhana Siljander
Decay estimates for time-fractional and other non-local in time subdiffusion equations in R^d
We prove optimal estimates for the decay in time of solutions to a rather general class of non-local in time subdiffusion equations in R d . An important special case is the timefractional diffusion equation, which has seen much interest during the last years, mostly due to its applications in the modeling of anomalous diffusion processes. We follow three different approaches and techniques to study this particular case: (A) estimates based on the fundamental solution and Young’s inequality, (B) Fourier multiplier methods, and (C) the energy method. It turns out that the decay behaviour is markedly different from the heat equation case, in particular there occurs a critical dimension phenom…
Representation of solutions and large-time behavior for fully nonlocal diffusion equations
Abstract We study the Cauchy problem for a nonlocal heat equation, which is of fractional order both in space and time. We prove four main theorems: (i) a representation formula for classical solutions, (ii) a quantitative decay rate at which the solution tends to the fundamental solution, (iii) optimal L 2 -decay of mild solutions in all dimensions, (iv) L 2 -decay of weak solutions via energy methods. The first result relies on a delicate analysis of the definition of classical solutions. After proving the representation formula we carefully analyze the integral representation to obtain the quantitative decay rates of (ii). Next we use Fourier analysis techniques to obtain the optimal dec…
Boundary Regularity for the Porous Medium Equation
We study the boundary regularity of solutions to the porous medium equation $u_t = \Delta u^m$ in the degenerate range $m>1$. In particular, we show that in cylinders the Dirichlet problem with positive continuous boundary data on the parabolic boundary has a solution which attains the boundary values, provided that the spatial domain satisfies the elliptic Wiener criterion. This condition is known to be optimal, and it is a consequence of our main theorem which establishes a barrier characterization of regular boundary points for general -- not necessarily cylindrical -- domains in ${\bf R}^{n+1}$. One of our fundamental tools is a new strict comparison principle between sub- and superpara…
On the interior regularity of weak solutions to the 2-D incompressible Euler equations
We study whether some of the non-physical properties observed for weak solutions of the incompressible Euler equations can be ruled out by studying the vorticity formulation. Our main contribution is in developing an interior regularity method in the spirit of De Giorgi–Nash–Moser, showing that local weak solutions are exponentially integrable, uniformly in time, under minimal integrability conditions. This is a Serrin-type interior regularity result $$\begin{aligned} u \in L_\mathrm{loc}^{2+\varepsilon }(\Omega _T) \implies \mathrm{local\ regularity} \end{aligned}$$ for weak solutions in the energy space $$L_t^\infty L_x^2$$ , satisfying appropriate vorticity estimates. We also obtain impr…
Everywhere differentiability of viscosity solutions to a class of Aronsson's equations
For any open set $\Omega\subset\mathbb R^n$ and $n\ge 2$, we establish everywhere differentiability of viscosity solutions to the Aronsson equation $$ =0 \quad \rm in\ \ \Omega, $$ where $H$ is given by $$H(x,\,p)==\sum_{i,\,j=1}^na^{ij}(x)p_i p_j,\ x\in\Omega, \ p\in\mathbb R^n, $$ and $A=(a^{ij}(x))\in C^{1,1}(\bar\Omega,\mathbb R^{n\times n})$ is uniformly elliptic. This extends an earlier theorem by Evans and Smart \cite{es11a} on infinity harmonic functions.