6533b7dafe1ef96bd126d950
RESEARCH PRODUCT
Representation of solutions and large-time behavior for fully nonlocal diffusion equations
Juhana SiljanderJukka KemppainenRico Zachersubject
Riemann-Liouville derivativeRiemann–Liouville derivativenonlocal diffusion01 natural sciencesdecay of solutionssymbols.namesakeMathematics - Analysis of PDEsFundamental solutionFOS: MathematicsInitial value problemApplied mathematics0101 mathematicsMathematicsfundamental solutionSpacetimeApplied Mathematics010102 general mathematicsta111energy inequalityRandom walk010101 applied mathematicsPrimary 35R11 Secondary 45K05 35C15 47G20Fourier analysisNorm (mathematics)Bounded functionsymbolsHeat equationfractional LaplacianAnalysisAnalysis of PDEs (math.AP)description
Abstract We study the Cauchy problem for a nonlocal heat equation, which is of fractional order both in space and time. We prove four main theorems: (i) a representation formula for classical solutions, (ii) a quantitative decay rate at which the solution tends to the fundamental solution, (iii) optimal L 2 -decay of mild solutions in all dimensions, (iv) L 2 -decay of weak solutions via energy methods. The first result relies on a delicate analysis of the definition of classical solutions. After proving the representation formula we carefully analyze the integral representation to obtain the quantitative decay rates of (ii). Next we use Fourier analysis techniques to obtain the optimal decay rate for mild solutions. Here we encounter the critical dimension phenomenon where the decay rate attains the decay rate of that in a bounded domain for large enough dimensions. Consequently, the decay rate does not anymore improve when the dimension increases. The theory is markedly different from that of the standard caloric functions and this substantially complicates the analysis. Finally, we use energy estimates and a comparison principle to prove a quantitative decay rate for weak solutions defined via a variational formulation. Our main idea is to show that the L 2 -norm is actually a subsolution to a purely time-fractional problem which allows us to use the known theory to obtain the result.
year | journal | country | edition | language |
---|---|---|---|---|
2017-01-01 |