0000000000471797
AUTHOR
T. Mineo
TES microcalorimeter for IXO: From focal plane to anticoincidence detector
The high resolution spectroscopy provides a unique technique to extract fundamental information in X-ray Astrophysics and Cosmology. In order to exploit at the best the capability of carrying out spectroscopy of faint sources, great care must be taken to reduce the background in the main detector. In this paper, we will present the working principle of a TES (Transition Edge Sensor) Microcalorimeter, its application for fine spectroscopy and a novel anticoincidence technique , based itself on a TES detector. Recent results from the first sample of the IXO-anticoincidence detector will be also shown.
Swift GRBs: The early afterglow spectral energy distribution
We present the first results of a program to systematically study the optical-to-X-ray spectral energy distribution (SED) of Swift GRB afterglows with known redshift. The goal is to study the properties of the GRB explosion and of the intervening absorbing material. In this report we present the preliminary analysis on 23 afterglows. Thanks to Swift, we could build the SED at early times after the GRB (minutes to hours). We derived the Hydrogen column densities and the spectral slopes from the X-ray spectrum. We then constrained the visual extinction by requiring that the combined optical/X-ray SED is due to synchrotron, namely either a single power law or a broken power law with a slope ch…
Development of a TES based Cryo-Anticoincidence for a large array of microcalorimeters
The employment of large arrays of microcalorimeters in space missions (IXO, EDGE/XENIA)[1][2][3], requires the presence of an anticoincidence detector to remove the background due to the particles, with a rejection efficiency at least equal to Suzaku (98%) [1]. A new concept of anticoincidence is under development to match the very tight thermal requirements and to simplify the design of the electronic chain. The idea is to produce a Cryo-AntiCoincidence (Cryo-AC) based on a silicon absorber and read by a TES (Transition-Edge Sensor). This configuration would ensure very good performances in terms of efficiency, time response and signal to noise ratio. We present the results of estimations,…
The Large Observatory for X-ray Timing (LOFT)
High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultra-dense matter and to black hole masses and spins. A 10 m^2-class instrument in combination with good spectral resolution is required to exploit the relevant diagnostics and answer two of the fundamental questions of the European Space Agency (ESA) Cosmic Vision Theme "Matter under extreme conditions", namely: does matter orbiting close to the event horizon follow the predictions of general relativity? What is the equation of state of matter in neutron stars? The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M…
The NHXM observatory
Exploration of the X-ray sky has established X-ray astronomy as a fundamental astrophysical discipline. While our knowledge of the sky below 10 keV has increased dramatically (∼8 orders of magnitude) by use of grazing incidence optics, we still await a similar improvement above 10 keV, where to date only collimated instruments have been used. Also ripe for exploration is the field of X-ray polarimetry, an unused fundamental tool to understand the physics and morphology of X-ray sources. Here we present a novel mission, the New Hard X-ray Mission (NHXM) that brings together for the first time simultaneous high-sensitivity, hard-X-ray imaging, broadband spectroscopy and polarimetry. NHXM will…
Looking through the photoionisation wake: Vela X-1 at $\varphi_\mathrm{orb} \approx 0.75$ with Chandra/HETG
The Supergiant X-ray binary Vela X-1 represents one of the best astrophysical sources to investigate the wind environment of a O/B star irradiated by an accreting neutron star. Previous studies and hydrodynamic simulations of the system revealed a clumpy environment and the presence of two wakes: an accretion wake surrounding the compact object and a photoionisation wake trailing it along the orbit. Our goal is to conduct, for the first time, high-resolution spectroscopy on Chandra/HETG data at the orbital phase $\varphi_\mathrm{orb} \approx 0.75$, when the line of sight is crossing the photoionisation wake. We aim to conduct plasma diagnostics, inferring the structure and the geometry of t…
The flaring afterglow of GRB 050730
We present a detailed spectral and temporal analysis of Swift and XMM-Newton observations of GRB 050730. The X-ray afterglow of GRB 050730 was found to decline with time with intense flaring activity superimposed. Evidence of flaring activity in the early UVOT optical afterglow, simultaneous with that observed in the X-ray band, was found. Strong spectral evolution in the X-ray energy band during the flaring activity was present.
Rest frame light curves of Swift GRBs
Pile-up correction for the Swift-XRT observations in WT mode
The detector at the focal plane of the Swift X-ray Telescope (XRT) supports four readout modes, automatically changed on board, to cover the dynamical range of fluxes and rapid variability expected from GRB afterglows. The Windowed Timing (WT) mode is used for sources with flux higher than a few mCrab and is obtained by compressing 10 rows into a single row, and then reading out only the central 200 columns of the CCD. Point sources with a rate above ~300 c/s produce severe pile-up in the central region of the Point Spread Function. This paper presents three methods to correct the effects of the pile-up in WT mode. On ground calibration results and data from the very bright GRB 060124 are u…
Swift Observations of GRB 051109B
We present Swift observations of GRB 051109B, a soft long burst triggered by the Burst Alert Telescope (BAT). The soft photon index of the prompt emission suggest it is a X-ray Flash (XRF) or, at least, a X-ray Rich (XRR) burst. The X-ray lightcurve displays the canonical shape of many other GRBs, a double b roken power law with a small flare superimposed at ~T_0+1500 s, and its extrapolation to early times smoothly joins with the BAT lightcurve. On the basis of the derived optical to X-ray flux ratio, it cannot be classified as a dark burst.
XIPE: the x-ray imaging polarimetry explorer
XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror bu…
Background Rejection of Charged Particles in the Simbol-X Telescope: Preliminary Study of Protons Scattering
X-ray telescopes equipped with focusing optics in high eccentric orbit, as e.g. Newton-XMM and Chandra, showed a degradation of the detector performance and an important increase of the noise due to soft protons with energy between a few tens of keV and a few MeV, that are focused on the detector through the mirror module. It should be noted that the focusing of the protons by Wolter optics was an unexpected phenomenon. In Simbol-X a magnetic diverter will be implemented to deflect protons, in order to reduce the flux of charged particles impinging upon the focal plane. Obviously the design of the diverter should take into consideration the protons distribution at the exit of the mirror mod…
Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre
Full list of authors: Acharyya, A.; Adam, R.; Adams, C.; Agudo, I.; Aguirre-Santaella, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Aloisio, R.; Alves Batista, R.; Amati, L.; Ambrosi, G.; Angüner, E. O.; Antonelli, L. A.; Aramo, C.; Araudo, A.; Armstrong, T.; Arqueros, F.; Asano, K.; Ascasíbar, Y. Ashley, M.; Balazs, C.; Ballester, O.; Baquero Larriva, A.; Barbosa Martins, V.; Barkov, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra, J.; Beck, G.; Becker Tjus, J.; Benbow, W.; Benito, M.; Berge, D.; Bernardini, E.; Bernlöhr, K.; Berti, A.; Bertucci, B.; Beshley, V.; Biasuzzi, B.; Biland, A.; Bissaldi, E.; Biteau, J.; Blanch, O.; Blazek, J.; Bocchino, F.; Boisson, C.; Bonneau Arbe…
ORIGIN: metal creation and evolution from the cosmic dawn
Herder, Jan-Willem den et al.
The short GRB 051210 observed by Swift
We report on the short GRB051210 detected by the Swift-BAT. The light curve, on which we focus mainly, shows a hint of extended emission in the BAT energy range, a steep decay of the X-ray emission, without any flattening or break, and two small flares in the first 300 sec. The emission fades out after ~1000 s.
Attributes of flares in Gamma Ray Bursts: sample I
We discuss some of the preliminary results and findings derived from the analysis of a first sample of flares detected by the XRT on board Swift. The analysis shows that the morphology of flares is the one we expect from the collision of ultra-relativistic shells as it happens during the internal shock model proposed by Rees and Meszaros in 1994. Furthermore the Delta(t)/t ratio and the decay-time to rise-time ratio have mean values that are in good agreement with the values observed in the prompt emission pulses that are believed to originate from internal shocks. The conclusion is that the flare analysis favors the internal shock as due to shells that have been ejected by the central engi…
XIPE: the X-ray imaging polarimetry explorer
arXiv:1309.6995v1.-- et al.