0000000000477813

AUTHOR

Paweł Wierzba

0000-0001-5502-0234

Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers

International audience; In this paper we investigated the response of a fiber-optic Fabry-Pérot sensing interferometer with thin ZnO layers deposited on the end faces of the optical fibers forming the cavity. Standard telecommunication single-mode optical fiber (SMF-28) segments were used with the thin ZnO layers deposited by Atomic Layer Deposition (ALD). Measurements were performed with the interferometer illuminated by two broadband sources operating at 1300 nm and 1550 nm. Reflected interference signal was acquired by an optical spectrum analyzer while the length of the air cavity was varied. Thickness of the ZnO layers used in the experiments was 50 nm, 100 nm, and 200 nm. Uncoated SMF…

research product

ALD thin ZnO layer as an active medium in a fiber-optic Fabry–Perot interferometer

Abstract A novel optical fiber sensor of temperature using a thin ZnO layer fabricated by atomic layer deposition (ALD) is demonstrated for the first time. The thin ZnO layer was grown on the face of a standard optical telecommunication fiber SMF-28 and operates as a Fabry–Perot interferometer sensitive to temperature. The interferometer characterization was made in the temperature range extending from 50 to 300 °C with resolution equal to 1 °C. The output signal was analyzed by measurement of the shift of the maxima in spectral pattern. The sensitivity of temperature measurement is about 0.05 nm/°C. Furthermore, very good linearity of the sensor was achieved with correlation coefficient R2…

research product