0000000000478087
AUTHOR
T. Martinez
Total absorption γ -ray spectroscopy of niobium isomers
15 pags. 17 figs., 5 tabs.
Experimental study of 100Tc β decay with total absorption γ -ray spectroscopy
The β decay of 100Tc has been studied by using the total absorption γ -ray spectroscopy technique at the Ion Guide Isotope Separator On-Line facility in Jyväskylä. In this work the new Decay Total Absorption γ -ray Spectrometer in coincidence with a cylindrical plastic β detector has been employed. The β intensity to the ground state obtained from the analysis is in good agreement with previous high-resolution measurements. However, differences in the feeding to the first-excited state as well as weak feeding to a new level at high excitation energy have been deduced from this experiment. Theoretical calculations performed in the quasiparticle random-phase approximation framework are also r…
Total absorption studies of high priority decays for reactor applications: 86Br and 91Rb
Preliminary results from beta decay studies of nuclei that are important for reactor applications are presented. The beta decays have been studied using the total absorption technique (TAS) and the pure beams provided by the JYFLTRAP system at the IGISOL facility of the University of Jyväskylä. peerReviewed
Study of the β decay of fission products with the DTAS detector
Total Absorption Spectroscopy measurements of the β decay of 103Mo and 103Tc, important contributors to the decay heat summation calculation in reactors, are reported in this work. The analysis of the experiment, performed at IGISOL with the new DTAS detector, show new β intensity that was not detected in previous measurements with Ge detectors. peerReviewed
New measurement of the 242Pu(n,γ) cross section at n-TOF-EAR1 for MOX fuels: Preliminary results in the RRR
The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with 238U to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. The use of MOX fuels in thermal and fast reactors requires accurate capture and fission cross sections. For the particular case of 242Pu, the previous neutron capture cross section measurements were made in the 70’s, providing an uncertainty of about 35% in the keV region. In this context, the Nuclear Energy Agency recommends in its “High Priority Request List” and its report WPEC-26 that the capture cross section of 242Pu…
The nuclear structure of 229Th
Abstract The γ -rays following the β − decay of 229 Ac have been investigated by means of γ -ray singles and γγ -coincidence measurements using Ge detectors. Multipolarities of 40 transitions in 229 Th have been established by measuring conversion electrons with a mini-orange electron spectrometer. The half-lives of the 146.35, 164.53 and 261.96 keV levels have been measured using the advanced time delayed βγγ (t) method. The low-lying states in 229 Th and observed transition rates have been interpreted within the quasiparticle–phonon model with inclusion of Coriolis coupling. Two octupole correlated parity partner bands, with K π =5/2 ± and K π =3/2 ± , were identified in 229 Th.
Characterization of a neutron–beta counting system with beta-delayed neutron emitters
A new detection system for the measurement of beta-delayed neutron emission probabilities has been characterized using fission products with well known β-delayed neutron emission properties. The setup consists of BELEN-20, a 4π neutron counter with twenty 3He proportional tubes arranged inside a large polyethylene neutron moderator, a thin Si detector for β counting and a selftriggering digital data acquisition system. The use of delayed-neutron precursors with different neutron emission windows allowed the study of the effect of energy dependency on neutron, β and β-neutron rates. The observed effect is well reproduced by Monte Carlo simulations. The impact of this dependency on the accura…
Experimental study of $^{100}$Tc $\beta$ decay with total absorption $\gamma$-ray spectroscopy
International audience; The β decay of Tc100 has been studied by using the total absorption γ-ray spectroscopy technique at the Ion Guide Isotope Separator On-Line facility in Jyväskylä. In this work the new Decay Total Absorption γ-ray Spectrometer in coincidence with a cylindrical plastic β detector has been employed. The β intensity to the ground state obtained from the analysis is in good agreement with previous high-resolution measurements. However, differences in the feeding to the first-excited state as well as weak feeding to a new level at high excitation energy have been deduced from this experiment. Theoretical calculations performed in the quasiparticle random-phase approximatio…
First Measurement of Severalβ-Delayed Neutron Emitting Isotopes BeyondN=126
The β-delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with β-decay half-lives for 20 isotopes of Au, Hg, Tl, Pb, and Bi in the mass region N≳126. These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the β-decay strength distribution. This provides important constraints on global theoretical models currently used in r-process nucleosynthesis.
7Be(n,α) and 7Be(n,p) cross-section measurement for the cosmological lithium problem at the n-TOF facility at CERN
One of the most puzzling problems in Nuclear Astrophysics is the “Cosmological Lithium Problem”, i.e the discrepancy between the primordial abundance of \(^{7}\)Li observed in metal poor halo stars (Asplund et al. in Astrophys J 644:229–259, 2006, [1]), and the one predicted by Big Bang Nucleosynthesis (BBN). One of the reactions that could have an impact on the problem is \(^{7}\)Be(n,p)\(^{7}\)Li. Despite of the importance of this reaction in BBN, the cross-section has never been directly measured at the energies of interest for BBN. Taking advantage of the innovative features of the second experimental area at the n\(\_\)TOF facility at CERN (Sabate-Gilarte et al. in Eur Phys J A 53:210,…
Total Absorption Spectroscopy Study of $^{92}$Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape
The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. $^{92}$Rb makes the dominant contribution to the reactor spectrum in the 5-8 MeV range but its decay properties are in question. We have studied $^{92}$Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.
Large Impact of the Decay of Niobium Isomers on the Reactor ¯νe Summation Calculations
Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The β-intensity distributions of 100gs;100mNb and 102gs;102mNb β decays have been determined using the total absorption γ-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyväskylä. Here, the double Penning trap system JYFLTRAP was employed to disentangle the β decay of the isomeric states. The new data obtained in this …
Total absorption γ -ray spectroscopy of the β -delayed neutron emitters I137 and Rb95
The decays of the β-delayed neutron emitters I137 and Rb95 have been studied with the total absorption γ-ray spectroscopy technique. The purity of the beams provided by the JYFLTRAP Penning trap at the ion guide isotope separator on-line facility in Jyvaskyla allowed us to carry out a campaign of isotopically pure measurements with the decay total absorption γ-ray spectrometer, a segmented detector composed of 18 NaI(Tl) modules. The contamination coming from the interaction of neutrons with the spectrometer has been carefully studied, and we have tested the use of time differences between prompt γ rays and delayed neutron interactions to eliminate this source of contamination. Due to the s…
Characterization of a cylindrical plastic β-detector with Monte Carlo simulations of optical photons
In this work we report on the Monte Carlo study performed to understand and reproduce experimental measurements of a new plastic β-detector with cylindrical geometry. Since energy deposition simulations differ from the experimental measurements for such a geometry, we show how the simulation of production and transport of optical photons does allow one to obtain the shapes of the experimental spectra. Moreover, taking into account the computational effort associated with this kind of simulation, we develop a method to convert the simulations of energy deposited into light collected, depending only on the interaction point in the detector. This method represents a useful solution when extens…
Determination of β -decay ground state feeding of nuclei of importance for reactor applications
12 pags., 6 figs., 3 tabs.
The n_TOF facility: Neutron beams for challenging future measurements at CERN
The CERN n TOF neutron beam facility is characterized by a very high instantaneous neutron flux, excellent TOF resolution at the 185 m long flight path (EAR-1), low intrinsic background and coverage of a wide range of neutron energies, from thermal to a few GeV. These characteristics provide a unique possibility to perform high-accuracy measurements of neutron-induced reaction cross-sections and angular distributions of interest for fundamental and applied Nuclear Physics. Since 2001, the n TOF Collaboration has collected a wealth of high quality nuclear data relevant for nuclear astrophysics, nuclear reactor technology, nuclear medicine, etc. The overall efficiency of the experimental prog…
Approaching the precursor nuclei of the third r-process peak with RIBs
The rapid neutron nucleosynthesis process involves an enormous amount of very exotic neutron-rich nuclei, which represent a theoretical and experimental challenge. Two of the main decay properties that affect the final abundance distribution the most are half-lives and neutron branching ratios. Using fragmentation of a primary $^{238}$U beam at GSI we were able to measure such properties for several neutron-rich nuclei from $^{208}$Hg to $^{218}$Pb. This contribution provides a short update on the status of the data analysis of this experiment, together with a compilation of the latest results published in this mass region, both experimental and theoretical. The impact of the uncertainties …
Strong γ-ray emission from neutron unbound states populated in β-decay: Impact on (n,γ) cross-section estimates
J. L. Taín et al. -- 6 pags., 7 figs., 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0
Total absorption γ-ray spectroscopy of the β decays of 96gs,mY
The β decays of the ground state (gs) and isomeric state (m) of 96Y have been studied with the total absorption γ-ray spectroscopy technique at the Ion Guide Isotope Separator On-Line facility. The separation of the 8+ isomeric state from the 0− ground state was achieved thanks to the purification capabilities of the JYFLTRAP double Penning trap system. The β-intensity distributions of both decays have been independently determined. In the analyses the deexcitation of the 1581.6 keV level in 96Zr, in which conversion electron emission competes with pair production, has been carefully considered and found to have significant impact on the β-detector efficiency, influencing the β-intensity di…
Neutron measurements for advanced nuclear systems: The n_TOF project at CERN
A few years ago, the neutron time-of-flight facility n_TOF was built at CERN to address some of the urgent needs of high-accuracy nuclear data for Accelerator Driven Systems and other advanced nuclear energy systems, as well as for nuclear astrophysics and fundamental nuclear physics. Thanks to the characteristics of the neutron beam, and to state-of-the-art detection and acquisition systems, high quality neutron cross-section data have been obtained for a variety of isotopes, many of which radioactive. Following an important upgrade of the spallation target and of the experimental area, a new measurement campaign has started last year. After a brief review of the most important results obt…
Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations
Volume: 111 Host publication title: WONDER-2015 Host publication sub-title: 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS Isbn(print): 978-2-7598-1970-6 Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. Rb-92,Rb-93 are two fission products of importance in reactor antineutrino spectra and decay heat, but their beta-decay properti…
β decay of the nuclei 60Ga (Tz=−1), 62Ga, and 70Br (Tz=0)
Determination of β-decay ground state feeding of nuclei of importance for reactor applications
In β-decay studies the determination of the decay probability to the ground state (g.s.) of the daughter nucleus often suffers from large systematic errors. The difficulty of the measurement is related to the absence of associated delayed γ-ray emission. In this work we revisit the 4πγ−β method proposed by Greenwood and collaborators in the 1990s, which has the potential to overcome some of the experimental difficulties. Our interest is driven by the need to determine accurately the β-intensity distributions of fission products that contribute significantly to the reactor decay heat and to the antineutrinos emitted by reactors. A number of such decays have large g.s. branches. The method is…
Gamma/neutron competition above the neutron separation energy in delayed neutron emitters
To study the β-decay properties of some well known delayed neutron emitters an experiment was performed in 2009 at the IGISOL facility (University of Jyvaskyla in Finland) using Total Absorption -ray Spectroscopy (TAGS) technique. The aim of these measurements is to obtain the full β-strength distribution below the neutron separation energy (Sn) and the γ/neutron competition above. This information is a key parameter in nuclear technology applications as well as in nuclear astrophysics and nuclear structure. Preliminary results of the analysis show a significant γ-branching ratio above Sn. © Owned by the authors, published by EDP Sciences, 2014.
Influence of fusion barrier distributions on spin populations
Abstract Heavy-ion fusion barrier distributions are now routinely obtained directly from experimental data. By measuring the total γ -ray multiplicity for the 58 Ni + 60 Ni system, which has a striking yet well understood barrier distribution, we show that some evidence of the barrier structures is present in the derived spin populations. In particular, very high spins can be populated at energies rather close to (and even below) the ‘nominal’ Coulomb barrier.
Identification of yrast high-Kintrinsic states inOs188
The high-spin structure of the $Z=76$ nucleus $^{188}\mathrm{Os}$ has been studied using the incomplete fusion reaction $^{7}\mathrm{Li}+^{186}\mathrm{W}$. A ${K}^{\ensuremath{\pi}}={10}^{+}$ band has been established up to spin $({24}^{+})$ and its crossing with the ground-state band has been studied. In addition, intrinsic high-$K$ states have been identified and on top of two of them, ${K}^{\ensuremath{\pi}}={7}^{\ensuremath{-}}$ and ${K}^{\ensuremath{\pi}}={10}^{\ensuremath{-}}$, regular bands have been observed. The ${K}^{\ensuremath{\pi}}={16}^{+}$ and ${K}^{\ensuremath{\pi}}={18}^{+}$ states are yrast whereas the ${K}^{\ensuremath{\pi}}={14}^{+}$ level lies only 33 keV above the yras…
Total absorption spectroscopy of fission fragments relevant for reactor antineutrino spectra
International audience; The accurate determination of reactor antineutrino spectra remains a very active research topic for which new methods of study have emerged in recent years. Indeed, following the long-recognized reactor anomaly (measured antineutrino deficit in short baseline reactor experiments when compared with spectral predictions), the three international reactor neutrino experiments Double Chooz, Daya Bay and Reno have recently demonstrated the existence of spectral distortions in their measurements with respect to the same predictions. These spectral predictions were obtained through the conversion of integral beta-energy spectra obtained at the ILL research reactor. Several s…
Characterization of a neutron-beta counting system with beta-delayed neutron emitters
Abstract A new detection system for the measurement of beta-delayed neutron emission probabilities has been characterized using fission products with well known β-delayed neutron emission properties. The setup consists of BELEN-20, a 4π neutron counter with twenty 3He proportional tubes arranged inside a large polyethylene neutron moderator, a thin Si detector for β counting and a self-triggering digital data acquisition system. The use of delayed-neutron precursors with different neutron emission windows allowed the study of the effect of energy dependency on neutron, β and β–neutron rates. The observed effect is well reproduced by Monte Carlo simulations. The impact of this dependency on …
New reaction rates for the destruction of $^7$Be during big bang nucleosynthesis measured at CERN/n_TOF and their implications on the cosmological lithium problem
New measurements of the7Be(n,α)4He and7Be(n,p)7Li reaction cross sections from thermal to keV neutron energies have been recently performed at CERN/n_TOF. Based on the new experimental results, astrophysical reaction rates have been derived for both reactions, including a proper evaluation of their uncertainties in the thermal energy range of interest for big bang nucleosynthesis studies. The new estimate of the7Be destruction rate, based on these new results, yields a decrease of the predicted cosmological7Li abundance insufficient to provide a viable solution to the cosmological lithium problem.
Pronounced shape change induced by quasiparticle alignment
Mean lifetimes of high-spin states of Kr-74 have been determined using the Doppler-shift attenuation method. The high-spin states were studied using the Ca-40(Ca-40, alpha 2p) reaction at a beam energy of 160 MeV with the GASP gamma-ray spectrometer. The ground-state band and negative parity side band show the presence of three different configurations in terms of transitional quadrupole deformations. A dramatic shape change was found along the ground-state band after the S-band crossing. The deduced quadrupole deformation changes are well reproduced by cranked Woods-Saxon Strutinsky calculations.
Total absorption γ-ray spectroscopy of beta delayed neutron emitters
Preliminary results of the data analysis of the beta decay of 94Rb using a novel - segmented- total absorption spectrometer are shown in this contribution. This result is part of a systematic study of important contributors to the decay heat problem in nuclear reactors. In this particular case the goal is to determine the beta intensity distribution below the neutron separation energy and the gamma/beta competition above.
Be7(n,α)He4Reaction and the Cosmological Lithium Problem: Measurement of the Cross Section in a Wide Energy Range at n_TOF at CERN
The energy-dependent cross section of the (7)Bed(n,alpha)He-4 reaction, of interest for the so-called cosmological lithium problem in big bang nucleosynthesis, has been measured for the first time from 10 meV to 10 keV neutron energy. The challenges posed by the short half-life of Be-7 and by the low reaction cross section have been overcome at n_TOF thanks to an unprecedented combination of the extremely high luminosity and good resolution of the neutron beam in the new experimental area (EAR2) of the n_TOF facility at CERN, the availability of a sufficient amount of chemically pure Be-7, and a specifically designed experimental setup. Coincidences between the two alpha particles have been…
Neutron capture cross section measurement ofU238at the CERN n_TOF facility in the energy region from 1 eV to 700 keV
The aim of this work is to provide a precise and accurate measurement of the U238(n,γ) reaction cross section in the energy region from 1 eV to 700 keV. This reaction is of fundamental importance for the design calculations of nuclear reactors, governing the behavior of the reactor core. In particular, fast reactors, which are experiencing a growing interest for their ability to burn radioactive waste, operate in the high energy region of the neutron spectrum. In this energy region most recent evaluations disagree due to inconsistencies in the existing measurements of up to 15%. In addition, the assessment of nuclear data uncertainty performed for innovative reactor systems shows that the u…
Measurement of fission products β decay properties using a total absorption spectrometer
In a nuclear reactor, the decay of fission fragments is at the origin of decay heat and antineutrino flux. These quantities are not well known while they are very important for reactor safety and for our understanding of neutrino physics. One reason for the discrepancies observed in the estimation of the decay heat and antineutrinos flux coming from reactors could be linked with the Pandemonium effect. New measurements have been performed at the JYFL facility of Jyvaskyla with a Total Absorption Spectrometer (TAS) in order to circumvent this effect. An overview of the TAS technique and first results from the 2009 measurement campaign will be presented. © Owned by the authors, published by E…
Study of medium-spin states of neutron-rich 87, 89, 91Rb isotopes
International audience; Excited states of the rubidium isotopes$_{37}^{87, 89, 91}$Rb have been studied at the INFN Legnaro National Laboratory. Measurements of the $\gamma$ -ray decay of fragments produced in binary grazing reactions resulting from the interaction of a beam of 530 MeV$^{96}$Zr ions with a$^{124}$Sn target have been complemented by studies of the $\gamma$ -ray decay of fission fragments produced in the interaction of a beam of 230 MeV$^{36}$S ions with a thick$^{176}$Yb target. The structure of the yrast states of$_{37}^{87, 89, 91}$Rb has been discussed within the context of spherical shell-model and cranked Nilsson-Strutinsky calculations.
Nuclear structure of (231)Ac
The low-energy structure of 231Ac has been investigated by means of gamma ray spectroscopy following the beta-decay of 231Ra. Multipolarities of 28 transitions have been established by measuring conversion electrons with a mini-orange electron spectrometer. The decay scheme of 231Ra --> 231Ac has been constructed for the first time. The Advanced Time Delayed beta-gamma-gamma(t) method has been used to measure the half-lives of five levels. The moderately fast B(E1) transition rates derived suggest that the octupole effects, albeit weak, are still present in this exotic nucleus. The low-energy structure of 231 Ac has been investigated by means of γ ray spectroscopy following the β − decay of…
Study of the $��$-decay of $^{100}$Tc with Total Absorption $��$-Ray Spectroscopy
The \b{eta}-decay of 100 Tc has been studied using the Total Absorption ��-Ray Spectroscopy technique at IGISOL. In this work the new DTAS spectrometer in coincidence with a cylindrical plastic \b{eta} detector has been employed. The \b{eta}-intensity to the ground state obtained from the analysis is in good agreement with previous high-resolution measurements. However, differences in the feeding to the first excited state as well as weak feeding to a new level at high excitation energy have been deduced from this experiment. Theoretical calculations performed in the quasiparticle random- phase approximation (QRPA) framework are also reported. Comparison of these calculations with our measu…
Results of DTAS Campaign at IGISOL : Overview
The β decays of more than twenty fission fragments were measured in the first experiments with radioactive-ion beams employing the Decay Total Absorption γ-ray Spectrometer. In this work, we summarize the main results obtained so far from this experimental campaign carried out at the Ion Guide Isotope Separator On-Line facility. The advances introduced for these studies represent the state-of-the-art of our analysis methodology for segmented spectrometers. peerReviewed
Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations
Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland) using Total Absorption Spectroscopy (TAS). TAS is complemen…
Study of the $\beta$-decay of $^{100}$Tc with Total Absorption $\gamma$-Ray Spectroscopy
The \b{eta}-decay of 100 Tc has been studied using the Total Absorption {\gamma}-Ray Spectroscopy technique at IGISOL. In this work the new DTAS spectrometer in coincidence with a cylindrical plastic \b{eta} detector has been employed. The \b{eta}-intensity to the ground state obtained from the analysis is in good agreement with previous high-resolution measurements. However, differences in the feeding to the first excited state as well as weak feeding to a new level at high excitation energy have been deduced from this experiment. Theoretical calculations performed in the quasiparticle random- phase approximation (QRPA) framework are also reported. Comparison of these calculations with our…
The 33S(n,α)30Si cross section measurement at n TOF-EAR2 (CERN): From 0.01 eV to the resonance region
The 33S(n,α)30Si cross section measurement, using 10B(n,α) as reference, at the n TOF Experimental Area 2 (EAR2) facility at CERN is presented. Data from 0.01 eV to 100 keV are provided and, for the first time, the cross section is measured in the range from 0.01 eV to 10 keV. These data may be used for a future evaluation of the cross section because present evaluations exhibit large discrepancies. The 33S(n,α)30Si reaction is of interest in medical physics because of its possible use as a cooperative target to boron in Neutron Capture Therapy (NCT).
Total Absorption Study of Beta Decays Relevant for Nuclear Applications and Nuclear Structure
Abstract An overview is given of our activities related to the study of the beta decay of neutron rich nuclei relevant for nuclear applications. Recent results of the study of the beta decay of 87,88 Br using a new segmented total absorption spectrometer are presented. The measurements were performed at the IGISOL facility using trap-assisted total absorption spectroscopy.
Total absorption γ-ray spectroscopy of the β-delayed neutron emitters 137I and 95Rb
The decays of the β-delayed neutron emitters 137I and 95Rb have been studied with the total absorption γ-ray spectroscopy technique. The purity of the beams provided by the JYFLTRAP Penning trap at the ion guide isotope separator on-line facility in Jyväskylä allowed us to carry out a campaign of isotopically pure measurements with the decay total absorption γ-ray spectrometer, a segmented detector composed of 18 NaI(Tl) modules. The contamination coming from the interaction of neutrons with the spectrometer has been carefully studied, and we have tested the use of time differences between prompt γ rays and delayed neutron interactions to eliminate this source of contamination. Due to the s…
Measurement of the Pu-242(n,gamma) cross section from thermal to 500 keV at the Budapest research reactor and CERN n_TOF-EAR1 facilities
The design and operation of innovative nuclear systems requires a better knowledge of the capture and fission cross sections of the Pu isotopes. For the case of capture on 242Pu, a reduction of the uncertainty in the fast region down to 8-12% is required. Moreover, aiming at improving the evaluation of the fast energy range in terms of average parameters, the OECD NEA High Priority Request List (HPRL) requests high-resolution capture measurements with improved accuracy below 2 keV. The current uncertainties also affect the thermal point, where previous experiments deviate from each other by 20%. A fruitful collaboration betwen JGU Mainz and HZ Dresden-Rossendorf within the EC CHANDA project…
New Beta-delayed Neutron Measurements in the Light-mass Fission Group
A new accurate determination of beta-delayed neutron emission probabilities from nuclei in the low mass region of the light fission group has been performed. The measurements were carried out using the BELEN 4π neutron counter at the IGISOL-JYFL mass separator in combination with a Penning trap. The new results significantly improve the uncertainties of neutron emission probabilities for {sup 91}Br, {sup 86}As, {sup 85}As, and {sup 85}Ge nuclei.
Enhanced Gamma-Ray Emission from Neutron Unbound States Populated in Beta Decay
International audience; Total absorption spectroscopy was used to investigate the beta-decay intensity to states above the neutron separation energy followed by gamma-ray emission in 87,88Br and 94Rb. Accurate results were obtained thanks to a careful control of systematic errors. An unexpectedly large gamma intensity was observed in all three cases extending well beyond the excitation energy region where neutron penetration is hindered by low neutron energy. The gamma branching as a function of excitation energy was compared to Hauser-Feshbach model calculations. For 87Br and 88Br the gamma branching reaches 57% and 20% respectively, and could be explained as a nuclear structure effect. So…
Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra Determination
8 pags., 3 figs., 1 tab. ; Presented at the XXXIV Mazurian Lakes Conference on Physics, Piaski, Poland, September 6–13, 2015.
Total absorption γ -ray spectroscopy of the β -delayed neutron emitters Br87 , Br88 , and Rb94
We investigate the decay of 87,88Br and 94Rb using total absorption γ -ray spectroscopy. These important fission products are β-delayed neutron emitters. Our data show considerable βγ intensity, so far unobserved in high-resolution γ -ray spectroscopy, from states at high excitation energy. We also find significant differences with the β intensity that can be deduced from existing measurements of the β spectrum. We evaluate the impact of the present data on reactor decay heat using summation calculations. Although the effect is relatively small it helps to reduce the discrepancy between calculations and integral measurements of the photon component for 235U fission at cooling times in the r…
β -decay half-lives and β -delayed neutron emission probabilities for several isotopes of Au, Hg, Tl, Pb, and Bi, beyond N=126
Background: Previous measurements of Beta-delayed neutron emitters comprise around 230 nuclei, spanning from the 8He up to 150La. Apart from 210Tl, with a minuscule branching ratio of 0.07%, no other neutron emitter is measured yet beyond A = 150. Therefore new data are needed, particularly in the heavy mass region around N=126, in order to guide theoretical models and to understand the formation of the third r-process peak at A 195. Purpose: To measure both, Beta-decay half-lives and neutron branching ratios of several neutron-rich Au, Hg, Tl, Pb and Bi isotopes beyond N = 126. Method: Ions of interest are produced by fragmentation of a 238U beam, selected and identifed via the GSI-FRS fra…
Nuclear Data for the Thorium Fuel Cycle and the Transmutation of Nuclear Waste
Neutron-induced reaction cross sections play an important role in a wide variety of research fields, ranging from stellar nucleosynthesis, the investigation of nuclear level density studies, to applications of nuclear technology, including the transmutation of nuclear waste, accelerator-driven systems, and nuclear fuel cycle investigations. Simulations of nuclear technology applications largely rely on evaluated nuclear data libraries. These libraries are based both on experimental data and theoretical models. An outline of experimental nuclear data activities at CERN’s neutron time-of-flight facility, n_TOF, will be presented.
The 236U neutron capture cross-section measured at the n TOF CERN facility
International audience; The $^{236}$U isotope plays an important role in nuclear systems, both for future and currently operating ones. The actual knowledge of the capture reaction of this isotope is satisfactory in the thermal region, but it is considered insufficient for Fast Reactor and ADS applications. For this reason the $^{236} \text{U}(n, \gamma)$ reaction cross-section has been measured for the first time in the whole energy region from thermal energy up to 1 MeV at the n_TOF facility with two different detection systems: an array of C$_6$D$_6$ detectors, employing the total energy deposited method, and a 4$\pi$ total absorption calorimeter (TAC), made of 40 BaF$_2$ crystals. The t…
High precision measurement of the radiative capture cross section of 238U at the n_TOF CERN facility
The importance of improving the accuracy on the capture cross-section of 238U has been addressed by the Nuclear Energy Agency, since its uncertainty significantly affects the uncertainties of key design parameters for both fast and thermal nuclear reactors. Within the 7th framework programme ANDES of the European Commission three different measurements have been carried out with the aim of providing the 238U(n,γ) cross-section with an accuracy which varies from 1 to 5%, depending on the energy range. Hereby the final results of the measurement performed at the n-TOF CERN facility in a wide energy range from 1 eV to 700 keV will be presented. © The Authors, published by EDP Sciences, 2017.
Total Absorption Spectroscopy Study ofRb92Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape
The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. (92)Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied (92)Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.
Fission fragment angular distribution of 232Th(n,f) at the CERN n TOF facility
The angular distribution of fragments emitted in neutron-induced fission of 232Th was measured in the white spectrum neutron beam at the n_TOF facility at CERN. A reaction chamber based on Parallel Plate Avalanche Counters (PPAC) was used, where the detectors and the targets have been tilted 45 degrees with respect to the neutron beam direction in order to cover the full angular range of the fission fragments. A GEANT4 simulation has been developed to study the setup efficiency. The data analysis and the preliminary results obtained for the 232Th(n,f) between fission threshold and 100 MeV are presented here.
Radiative neutron capture on Pu242 in the resonance region at the CERN n_TOF-EAR1 facility
The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with uranium to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. However, an extensive use of MOX fuels, in particular in fast reactors, requires more accurate capture and fission cross sections for some Pu isotopes. In the case of Pu242 there are sizable discrepancies among the existing capture cross-section measurements included in the evaluations (all from the 1970s) resulting in an uncertainty as high as 35% in the fast energy region. Moreover, postirradiation experiments evaluat…
The measurement programme at the neutron time-of-flight facility n_TOF at CERN
Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN’s neutron time-of-flight facility n TOF has produced a considerabl…
Summation Calculations for Reactor Antineutrino Spectra, Decay Heat and Delayed Neutron Fractions Involving New TAGS Data and Evaluated Databases
9 pags., 3 figs. -- Open Access funded by Creative Commons Atribution Licence 4.0
MONSTER: a TOF Spectrometer for beta-delayed Neutron Spectroscopy
β-delayed neutron (DN) data, including emission probabilities, Pn, and energy spectrum, play an important role in our understanding of nuclear structure, nuclear astrophysics and nuclear technologies. A MOdular Neutron time-of-flight SpectromeTER (MONSTER) is being built for the measurement of the neutron energy spectra and branching ratios. The TOF spectrometer will consist of one hundred liquid scintillator cells covering a significant solid angle. The MONSTER design has been optimized by using Monte Carlo (MC) techniques. The response function of the MONSTER cell has been characterized with mono-energetic neutron beams and compared to dedicated MC simulations.
Characterization and performance of the DTAS detector
11 pags., 16 figs., 3 tabs.
Beta Decay Studies of Neutron Rich Nuclei Using Total Absorption Gamma-ray Spectroscopy and Delayed Neutron Measurements
International audience; A complete characterisation of the β-decay of neutron-rich nuclei can be obtained from the measurement of β-delayed gamma rays and, whenever the process is energetically possible, β-delayed neutrons. The accurate determination of the β-intensity distribution and the β-delayed neutron emission probability is of great relevance in the fields of reactor technology and nuclear astrophysics. A programme for combined measurements using the total absorption gamma-ray spectroscopy technique and both neutron counters and neutron time-of-flight spectrometers is presented.
Characterization and First Test of an i-TED Prototype at CERN n_TOF
International audience; Neutron capture cross section measurements are of fundamental importance for the study of the slow process of neutron capture, so called s-process. This mechanism is responsible for the formation of most elements heavier than iron in the Universe. To this aim, installations and detectors have been developed, as total energy radiation C$_{6}$ D$_{6}$ detectors. However, these detectors can not distinguish between true capture gamma rays from the sample under study and neutron induced gamma rays produced in the surroundings of the setup. To improve this situation, we propose (Domingo Pardo in Nucl Instr Meth Phys Res A 825:78–86, 2016, [1]) the use of the Compton princ…
β-delayed neutron emission measurements around the third r-process abundance peak
This contribution summarizes an experiment performed at GSI (Germany) in the neutron-rich region beyond N=126. The aim of this measurement is to provide the nuclear physics input of relevance for r-process model calculations, aiming at a better understanding of the third r-process abundance peak. Many exotic nuclei were measured around 211Hg and 215Tl. Final ion identification diagrams are given in this contribution. For most of them, we expect to derive halflives and and β-delayed neutron emission probabilities. The detectors used in this experiment were the Silicon IMplantation and Beta Absorber (SIMBA) detector, based on an array of highly segmented silicon detectors, and the BEta deLayE…
Enhancedγ-Ray Emission from Neutron Unbound States Populated inβDecay
Total absorption spectroscopy is used to investigate the β-decay intensity to states above the neutron separation energy followed by γ-ray emission in (87,88)Br and (94)Rb. Accurate results are obtained thanks to a careful control of systematic errors. An unexpectedly large γ intensity is observed in all three cases extending well beyond the excitation energy region where neutron penetration is hindered by low neutron energy. The γ branching as a function of excitation energy is compared to Hauser-Feshbach model calculations. For (87)Br and (88)Br the γ branching reaches 57% and 20%, respectively, and could be explained as a nuclear structure effect. Some of the states populated in the daug…
First experiment with the NUSTAR/FAIR Decay Total Absorption γ-Ray Spectrometer (DTAS) at the IGISOL IV facility
V. Guadilla et al. ; 4 págs.; 4 figs.; 1 tab.
Measurement of the 241Am neutron capture cross section at the n-TOF facility at CERN
New neutron cross section measurements of minor actinides have been performed recently in order to reduce the uncertainties in the evaluated data, which is important for the design of advanced nuclear reactors and, in particular, for determining their performance in the transmutation of nuclear waste. We have measured the 241 Am(n,γ) cross section at the n TOF facility between 0.2 eV and 10 keV with a BaF2 Total Absorption Calorimeter, and the analysis of the measurement has been recently concluded. Our results are in reasonable agreement below 20 eV with the ones published by C. Lampoudis et al. in 2013, who reported a 22% larger capture cross section up to 110 eV compared to experimental …
Nuclear data activities at the n_TOF facility at CERN
International audience; Nuclear data in general, and neutron-induced reaction cross sections in particular, are important for a wide variety of research fields. They play a key role in the safety and criticality assessment of nuclear technology, not only for existing power reactors but also for radiation dosimetry, medical applications, the transmutation of nuclear waste, accelerator-driven systems, fuel cycle investigations and future reactor systems as in Generation IV. Applications of nuclear data are also related to research fields as the study of nuclear level densities and stellar nucleosynthesis. Simulations and calculations of nuclear technology applications largely rely on evaluate…
Characterization of a cylindrical plastic {\beta}-detector with Monte Carlo simulations of optical photons
V. Guadilla et al. -- 5 pags., 8 figs., tab.
Quadrupole deformed and octupole collective bands in 228Ra
Spins and parities for collective states in $^{228}$Ra have been determined from conversion electron measurements with a mini-orange $\beta$-spectrometer. The fast-timing $\beta\gamma\gamma(t)$ method has been used to measure lifetimes of T$_{1/2}$=550(20) ps and 181(3) ps for the $2^{+}_{1}$ and $4^{+}_{1}$ members of the K=0$^{+}$ band, and T$_{1/2} \leqslant$ 7 ps and $\leqslant$ 6 ps for the $1^{-}_{1}$ and $3^{-}_1$ members of the K = $0^{-}$ band, respectively The quadrupole moments, $Q_{0}$ deduced from the B (E2; 2$_{1}^{+} \rightarrow 0_{1}^{+}$) and B (E2; 4$_{1}^{+} \rightarrow 2_1^{+}$) rates are in good agreement with the previously measured value and the systematics of the reg…
β-decay and β-delayed Neutron Emission Measurements at GSI-FRS Beyond N=126, for r-process Nucleosynthesis
New measurements of very exotic nuclei in the neutron-rich region beyond N=126 have been performed at the GSI facility with the fragment separator (FRS). The aim of the experiment is to determine half-lives and β-delayed neutron emission branching ratios of isotopes of Hg, Tl and Pb in this region. This contribution summarizes final counting statistics for identification and for implantation, as well as the present status of the data analysis of the half-lives. In summary, isotopes of Pt, Au, Hg, Tl, Pb, Bi, Po, At, Rn and Fr were clearly identified and several of them (208-211Hg, 211-215Tl, 214-218Pb) were implanted with enough statistics to determine their half-lives. About half of them a…
Spin distribution measurement for 64Ni + 100Mo at near and above barrier energies
Spin distribution measurements were performed for the reaction 64 Ni + 100 Mo at three beam energies ranging from 230 to 260 MeV. Compound nucleus (CN) spin distributions were obtained channel selective for each evaporation residue populated by the de-excitation cascade. A comparison of the spin distribution at different beam energies indicates that its slope becomes steeper and steeper with increasing beam energy. This change in slope of the spin distribution is mainly due to the onset of fission competition with particle evaporation at higher beam energies.
Large Impact of the Decay of Niobium Isomers on the Reactor ν¯e Summation Calculations
Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The beta-intensity distributions of Nb-100gs,Nb-100m and Nb-102gs,Nb-02m beta decays have been determined using the total absorption.-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyvaskyla. Here, the double Penning trap system JYFLTRAP was employed to disentangle the beta decay of the isomeric states. The new data ob…
Shape isomerism and shape coexistence effects on the Coulomb energy differences in theN=Znucleus66As and neighboringT=1multiplets
Excited states of the $N=Z=33$ nucleus ${}^{66}$As have been populated in a fusion-evaporation reaction and studied using $\ensuremath{\gamma}$-ray spectroscopic techniques. Special emphasis was put into the search for candidates for the $T=1$ states. A new 3${}^{+}$ isomer has been observed with a lifetime of 1.1(3) ns. This is believed to be the predicted oblate shape isomer. The excited levels are discussed in terms of the shell model and of the complex excited Vampir approaches. Coulomb energy differences are determined from the comparison of the $T=1$ states with their analog partners. The unusual behavior of the Coulomb energy differences in the $A=70$ mass region is explained through…
High-spin states in the neutron-rich A∼100 region
Two experimental setups have been used to study excited states of neutron‐rich nuclei in the A∼100 region. Extended level schemes and lifetime measurements were obtained using deep‐inelastic and fusion‐fission reactions with the CLARA‐PRISMA spectrometer and the Ge‐array GASP respectively. Experimental information from GASP has been used to complement the CLARA‐PRISMA experiment. Time spectra have been used to measure the lifetimes of isomeric states. Preliminary results are presented for 89Rb.
TAGS measurements of $^{100}$Nb ground and isomeric states and $^{140}$Cs for neutrino physics with the new DTAS detector
V. Guadilla et al. -- 4 pags., 6 figs. -- Open Access funded by Creative Commons Atribution Licence 4.0
Total absorption spectroscopy study of the β decay of Br86 and Rb91
The beta decays of 86Br and 91Rb have been studied using the total absorption spectroscopy technique. The radioactive nuclei were produced at the IGISOL facility in Jyvaskyla and further purified using the JYFLTRAP. 86Br and 91Rb are considered high priority contributors to the decay heat in reactors. In addition 91Rb was used as a normalization point in direct measurements of mean gamma energies released in the beta decay of fission products by Rudstam et al. assuming that this decay was well known from high-resolution measurements. Our results shows that both decays were suffering from the Pandemonium effect and that the results of Rudstam et al. should be renormalized.
Disentangling decaying isomers and searching for signatures of collective excitations in β decay
6 pags., 3 figs., 1 tab. -- 27th International Nuclear Physics Conference (INPC2019) 29 July - 2 August 2019, Glasgow, UK