0000000000478549

AUTHOR

P. Loaiza

showing 15 related works from this author

Precise measurement of 2νββ decay of 100Mo with the CUPID-Mo detection technology

2020

We report the measurement of the two-neutrino double-beta (2 νββ) decay of 100Mo to the ground state of 100Ru using lithium molybdate (Li2100MoO4) scintillating bolometers. The detectors were developed for the CUPID-Mo program and operated at the EDELWEISS-III low background facility in the Modane underground laboratory (France). From a total exposure of 42.235 kg× day, the half-life of 100Mo is determined to be T1/22ν=[7.12-0.14+0.18(stat.)±0.10(syst.)]×1018 years. This is the most accurate determination of the 2 νββ half-life of 100Mo to date.

Quantum PhysicsParticle and Plasma PhysicsMolecularNuclearnucl-exphysics.ins-detAtomicNuclear & Particles Physics
researchProduct

Limits to the muon flux from WIMP annihilation in the center of the Earth with the AMANDA detector

2002

A search for nearly vertical up-going muon-neutrinos from neutralino annihilations in the center of the Earth has been performed with the AMANDA-B10 neutrino detector. The data sample collected in 130.1 days of live-time in 1997, ~10^9 events, has been analyzed for this search. No excess over the expected atmospheric neutrino background is oberved. An upper limit at 90% confidence level on the annihilation rate of neutralinos in the center of the Earth is obtained as a function of the neutralino mass in the range 100 GeV-5000 GeV, as well as the corresponding muon flux limit.

PhysicsNuclear and High Energy PhysicsParticle physicsAnnihilationPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDark matterDetectorAstrophysics (astro-ph)High Energy Physics::PhenomenologyFOS: Physical sciencesSupersymmetryAstrophysicsHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Neutrino detectorWIMPNeutralinoHigh Energy Physics::Experimentddc:530Neutrino oscillation
researchProduct

RECENT RESULTS FROM AMANDA

2001

We present results based on data taken in 1997 with the 302-PMT Antarctic Muon and Neutrino Detector Array-B10 ("AMANDA-B10") array. Atmospheric neutrinos created in the northern hemisphere are observed indirectly through their charged current interactions which produce relativistic, Cherenkov-light-emitting upgoing muons in the South Pole ice cap. The reconstructed angular distribution of these events is in good agreement with expectation and demonstrates the viability of this ice-based device as a neutrino telescope.

PhysicsNuclear and High Energy PhysicsMuonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaSolar neutrinoAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsAstrophysicsSolar neutrino problemAtomic and Molecular Physics and OpticsNeutrino detectorMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrinoNeutrino oscillationPhysics::Atmospheric and Oceanic PhysicsCharged currentInternational Journal of Modern Physics A
researchProduct

Detailed studies of $^{100}$Mo two-neutrino double beta decay in NEMO-3

2019

The full data set of the NEMO-3 experiment has been used to measure the half-life of the two-neutrino double beta decay of $^{100}$Mo to the ground state of $^{100}$Ru, $T_{1/2} = \left[ 6.81 \pm 0.01\,\left(\mbox{stat}\right) ^{+0.38}_{-0.40}\,\left(\mbox{syst}\right) \right] \times10^{18}$ y. The two-electron energy sum, single electron energy spectra and distribution of the angle between the electrons are presented with an unprecedented statistics of $5\times10^5$ events and a signal-to-background ratio of ~80. Clear evidence for the Single State Dominance model is found for this nuclear transition. Limits on Majoron emitting neutrinoless double beta decay modes with spectral indices of …

Particle physicsS029MTPhysics and Astronomy (miscellaneous)FOS: Physical sciencesElementary particle[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-exinvariance: Lorentz01 natural sciences7. Clean energyneutrinoless double beta decaydecay modesPhysics Particles & Fieldsdouble-beta decay: (0neutrino)SEARCHDouble beta decay0103 physical sciencesground stateNuclear Experiment (nucl-ex)010306 general physics0206 Quantum PhysicsEngineering (miscellaneous)Nuclear ExperimentMajoronS076H2NPhysicsScience & TechnologyHALF-LIFE010308 nuclear & particles physicsPhysicsMO-100High Energy Physics::PhenomenologyNuclear & Particles PhysicsMajoronviolation: Lorentznucleus: transitionSTATESstatisticsPhysical Sciences0202 Atomic Molecular Nuclear Particle and Plasma Physicsspectralelectron: energy spectrumHigh Energy Physics::ExperimentNeutrinoGround stateEnergy (signal processing)Radioactive decayLepton
researchProduct

Precise measurement of $2\nu\beta\beta$ decay of $^{100}$Mo with the CUPID-Mo detection technology

2020

We report the measurement of the two-neutrino double-beta ($2\nu\beta\beta$) decay of $^{100}$Mo to the ground state of $^{100}$Ru using lithium molybdate (\crystal) scintillating bolometers. The detectors were developed for the CUPID-Mo program and operated at the EDELWEISS-III low background facility in the Modane underground laboratory. From a total exposure of $42.235$ kg$\times$d, the half-life of $^{100}$Mo is determined to be $T_{1/2}^{2\nu}=[7.12^{+0.18}_{-0.14}\,\mathrm{(stat.)}\pm0.10\,\mathrm{(syst.)}]\times10^{18}$ years. This is the most accurate determination of the $2\nu\beta\beta$ half-life of $^{100}$Mo to date. We also confirm, with the statistical significance of $>3\sigm…

Lithium molybdatePhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Analytical chemistry[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-ex01 natural sciencesAtomicchemistry.chemical_compoundParticle and Plasma Physicstwo-neutrino double-beta decay scintillating bolometers0103 physical sciencesddc:530Beta (velocity)Nuclear[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNuclear ExperimentEngineering (miscellaneous)physics.ins-detS076H2NPhysicsQuantum Physics010308 nuclear & particles physicsPhysicsMolecularBeta decayNuclear & Particles Physics3. Good healthchemistrydouble beta decays bolometersUnderground laboratoryGround state
researchProduct

Observation of high energy atmospheric neutrinos with the Antarctic muon and neutrino detector array

2002

The Antarctic Muon and Neutrino Detector Array (AMANDA) began collecting data with ten strings in 1997. Results from the first year of operation are presented. Neutrinos coming through the Earth from the Northern Hemisphere are identified by secondary muons moving upward through the array. Cosmic rays in the atmosphere generate a background of downward moving muons, which are about 10^6 times more abundant than the upward moving muons. Over 130 days of exposure, we observed a total of about 300 neutrino events. In the same period, a background of 1.05*10^9 cosmic ray muon events was recorded. The observed neutrino flux is consistent with atmospheric neutrino predictions. Monte Carlo simulat…

PhysicsAntarctic Muon And Neutrino Detector ArrayNuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)High Energy Physics::PhenomenologyFOS: Physical sciencesAstrophysicsSolar neutrino problemAstrophysicsHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Neutrino detectorMeasurements of neutrino speedHigh Energy Physics::Experimentddc:530Astrophysics::Earth and Planetary AstrophysicsNeutrinoNeutrino astronomyNeutrino oscillation
researchProduct

Status of the neutrino telescope AMANDA: Monopoles and WIMPs

2001

The neutrino telescope AMANDA has been set up at the geographical South Pole as first step to a neutrino telescope of the scale of one cubic kilometer, which is the canonical size for a detector sensitive to neutrinos from Active Galactic Nuclei (AGN), Gamma Ray Bursts (GRB) and Topological Defects (TD). The location and depth in which the detector is installed is given by the requirement to detect neutrinos by the Cherenkov light produced by their reaction products and to keep the background due to atmospheric muons as small as possible. However, a detector optimized for this purpose is also capable to detect the bright Cherenkov light from relativistic Monopoles and neutrino signals from …

PhysicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaSolar neutrinoDark matterAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsSolar neutrino problemNeutrino detectorMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyCherenkov radiation
researchProduct

The AMANDA neutrino detector - Status report

2000

Abstract The first stage of the AMANDA High Energy Neutrino Detector at the south Pole, the 302 PMT array AMANDA-B10, is taking data since 1997. We describe results on atmospheric neutrinos, limits on indirect WIMP detection, seasonal muon flux variation, relativistic monopole flux limits, a search for gravitational collapse neutrinos, and a depth scan of the optical ice properties. The next stage 19-string detector AMANDA-II with ∼650 PMTs will be completed in spring 2000.

PhysicsNuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDetectorCosmic rayAtomic and Molecular Physics and OpticsParticle detectorMassless particleWIMPNeutrino detectorHigh Energy Physics::ExperimentNeutrinoLeptonNuclear Physics B - Proceedings Supplements
researchProduct

Search for Supernova Neutrino-Bursts with the AMANDA Detector

2001

The core collapse of a massive star in the Milky Way will produce a neutrino burst, intense enough to be detected by existing underground detectors. The AMANDA neutrino telescope located deep in the South Pole ice can detect MeV neutrinos by a collective rate increase in all photo-multipliers on top of dark noise. The main source of light comes from positrons produced in the CC-reaction of anti-electron neutrinos on free protons $\antinue + p \to e^+ + n$. This paper describes the first supernova search performed on the full sets of data taken during 1997 and 1998 (215 days of live time) with 302 of the detector's optical modules. No candidate events resulted from this search. The performan…

PhysicsPhysics::Instrumentation and DetectorsMilky WayAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)DetectorFOS: Physical sciencesAstronomyAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsGalaxySupernovaPositronHigh Energy Physics::ExperimentNeutrinoCharged currentAstrophysics::Galaxy AstrophysicsDark current
researchProduct

Search for neutrinoless double-beta decay ofMo100with the NEMO-3 detector

2014

We report the results of a search for the neutrinoless double-$\beta$ decay (0$\nu\beta\beta$) of $^{100}$Mo, using the NEMO-3 detector to reconstruct the full topology of the final state events. With an exposure of 34.7 kg.y, no evidence for the 0$\nu\beta\beta$ signal has been found, yielding a limit for the light Majorana neutrino mass mechanism of $T_{1/2}(0\nu\beta\beta)>1.1 \times 10^{24}$ years (90% C.L.) once both statistical and systematic uncertainties are taken into account. Depending on the Nuclear Matrix Elements this corresponds to an upper limit on the Majorana effective neutrino mass of $ < 0.3-0.8$ eV (90% C.L.). Constraints on other lepton number violating mechanisms of 0$…

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsElectron01 natural sciencesBeta decayLepton numberNuclear physicsMAJORANADouble beta decay0103 physical sciencesBeta (velocity)Neutrino010306 general physicsEnergy (signal processing)Physical Review D
researchProduct

Results of the search for neutrinoless double-βdecay inMo100with the NEMO-3 experiment

2015

The NEMO-3 detector, which had been operating in the Modane Underground Laboratory from 2003 to 2010, was designed to search for neutrinoless double $\beta$ ($0\nu\beta\beta$) decay. We report final results of a search for $0\nu\beta\beta$ decays with $6.914$ kg of $^{100}$Mo using the entire NEMO-3 data set with a detector live time of $4.96$ yr, which corresponds to an exposure of 34.3 kg$\cdot$yr. We perform a detailed study of the expected background in the $0\nu\beta\beta$ signal region and find no evidence of $0\nu\beta\beta$ decays in the data. The level of observed background in the $0\nu\beta\beta$ signal region $[2.8-3.2]$ MeV is $0.44 \pm 0.13$ counts/yr/kg, and no events are obs…

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsSignal region01 natural sciencesBeta decayLower limitNuclear physicsMAJORANADouble beta decay0103 physical sciencesUnderground laboratoryBeta (velocity)Neutrino010306 general physicsPhysical Review D
researchProduct

Observation of high-energy neutrinos using Cerenkov detectors embedded deep in Antarctic ice.

2001

Neutrinos are elementary particles that carry no electric charge and have little mass. As they interact only weakly with other particles, they can penetrate enormous amounts of matter, and therefore have the potential to directly convey astrophysical information from the edge of the Universe and from deep inside the most cataclysmic high-energy regions. The neutrino's great penetrating power, however, also makes this particle difficult to detect. Underground detectors have observed low-energy neutrinos from the Sun and a nearby supernova2, as well as neutrinos generated in the Earth's atmosphere. But the very low fluxes of high-energy neutrinos from cosmic sources can be observed only by mu…

PhysicsAntarctic Muon And Neutrino Detector ArrayMultidisciplinaryPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaSolar neutrinoAstronomyAstrophysicsSolar neutrino problemCosmic neutrino backgroundNeutrino detectorMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyNature
researchProduct

Final results on $${}^\mathbf{82 }{\hbox {Se}}$$ 82Se double beta decay to the ground state of $${}^\mathbf{82 }{\hbox {Kr}}$$ 82Kr from the NEMO-3 e…

2018

Using data from the NEMO-3 experiment, we have measured the two-neutrino double beta decay ($$2\nu \beta \beta $$ 2νββ ) half-life of $$^{82}$$ 82 Se as $$T_{\smash {1/2}}^{2\nu } \!=\! \left[ 9.39 \pm 0.17\left( \text{ stat }\right) \pm 0.58\left( \text{ syst }\right) \right] \times 10^{19}$$ T1/22ν=9.39±0.17stat±0.58syst×1019 y under the single-state dominance hypothesis for this nuclear transition. The corresponding nuclear matrix element is $$\left| M^{2\nu }\right| = 0.0498 \pm 0.0016$$ M2ν=0.0498±0.0016 . In addition, a search for neutrinoless double beta decay ($$0\nu \beta \beta $$ 0νββ ) using 0.93 kg of $$^{82}$$ 82 Se observed for a total of 5.25 y has been conducted and no evide…

European Physical Journal
researchProduct

Precise measurement of $$2\nu \beta \beta $$ 2νββ decay of $$^{100}$$ 100 Mo with the CUPID-Mo detection technology

2020

We report the measurement of the two-neutrino double-beta ($$2\nu \beta \beta $$ 2νββ ) decay of $$^{100}$$ 100 Mo to the ground state of $$^{100}$$ 100 Ru using lithium molybdate ($$\hbox {Li}_2^{\;\;100}\hbox {MoO}_4$$ Li2100MoO4 ) scintillating bolometers. The detectors were developed for the CUPID-Mo program and operated at the EDELWEISS-III low background facility in the Modane underground laboratory (France). From a total exposure of 42.235 kg$$\times $$ × day, the half-life of $$^{100}$$ 100 Mo is determined to be $$T_{1/2}^{2\nu }=[7.12^{+0.18}_{-0.14}\,\mathrm {(stat.)}\pm 0.10\,\mathrm {(syst.)}]\times 10^{18}$$ T1/22ν=[7.12-0.14+0.18(stat.)±0.10(syst.)]×1018 years. This is the mo…

European Physical Journal
researchProduct

Detailed studies of $$^{100}$$ 100 Mo two-neutrino double beta decay in NEMO-3

2019

The full data set of the NEMO-3 experiment has been used to measure the half-life of the two-neutrino double beta decay of $$^{100}$$ 100 Mo to the ground state of $$^{100}$$ 100 Ru, $$T_{1/2} = \left[ 6.81 \pm 0.01\,\left( \text{ stat }\right) ^{+0.38}_{-0.40}\,\left( \text{ syst }\right) \right] \times 10^{18}$$ T1/2=6.81±0.01stat-0.40+0.38syst×1018 year. The two-electron energy sum, single electron energy spectra and distribution of the angle between the electrons are presented with an unprecedented statistics of $$5\times 10^5$$ 5×105 events and a signal-to-background ratio of $$\sim $$ ∼ 80. Clear evidence for the Single State Dominance model is found for this nuclear transition. Limit…

European Physical Journal
researchProduct