0000000000481001

AUTHOR

Yolanda Sestayo De La Cerra

showing 4 related works from this author

Measurement of acoustic attenuation in South Pole ice

2010

Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been analyzed and give consistent results. The method with the smallest systematic uncertainties yields an amplitude attenuation coefficient alpha = 3.20 \pm 0.57 km^(-1) between 10 and 30 kHz, considerably larger than previous theoretical estimates. Expressed as an attenuation length, the analyses give a consistent result for lambda = 1/alpha of ~1/300 m with 20% uncertainty. No significant depth or …

Acoustic attenuation; Acoustics; Ice; Neutrino astronomy; South Pole[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]010504 meteorology & atmospheric sciences[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]iceFOS: Physical sciencesAetiology screening and detection [ONCOL 5]Lambda01 natural sciencesneutrino astronomy[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]OpticsSpectrum0103 physical sciencesacousticsInstrumentation and Methods for Astrophysics (astro-ph.IM)0105 earth and related environmental sciencesPhysicsSouth Pole010308 nuclear & particles physicsbusiness.industryAttenuation[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]TransmitterAttenuation lengthAstronomy and AstrophysicsGeodesy004AmplitudeAttenuation coefficientddc:540NeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsbusinessAcoustic attenuationinfo:eu-repo/classification/ddc/004acoustic attenuation
researchProduct

First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector

2011

We report on the first search for atmospheric and for diffuse astrophysical neutrino-induced showers (cascades) in the IceCube detector using 257 days of data collected in the year 2007-2008 with 22 strings active. A total of 14 events with energies above 16 TeV remained after event selections in the diffuse analysis, with an expected total background contribution of $8.3\pm 3.6$. At 90% confidence we set an upper limit of $E^2\Phi_{90%CL}<3.6\times10^{-7} GeV \cdot cm^{-2} \cdot s^{-1}\cdot sr^{-1} $ on the diffuse flux of neutrinos of all flavors in the energy range between 24 TeV and 6.6 PeV assuming that $\Phi \propto E^{-2}$ and that the flavor composition of the $\nu_e : \nu_\mu : \nu…

HIGH-ENERGY NEUTRINOSSELECTIONNuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaHigh-energy neutrinosFOS: Physical sciencesFluxCosmic rayElementary particleAstrophysicsParticle detectorIceCubeHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)SCATTERINGddc:530High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSPECTRUMICEHigh Energy Physics::Phenomenology004Massless particlePhysics and AstronomyNeutrino detectorAMANDA-IIHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical Phenomenainfo:eu-repo/classification/ddc/004LeptonPhysical Review D
researchProduct

Search for dark matter from the Galactic halo with the IceCube neutrino telescope

2011

Self-annihilating or decaying dark matter in the Galactic halo might produce high energy neutrinos detectable with neutrino telescopes. We have conducted a search for such a signal using 276 days of data from the IceCube 22-string configuration detector acquired during 2007 and 2008. The effect of halo model choice in the extracted limit is reduced by performing a search that considers the outer halo region and not the Galactic Center. We constrain any large-scale neutrino anisotropy and are able to set a limit on the dark matter self-annihilation cross section of ⟨σAv⟩≃10-22 cm3 s-1 for weakly interacting massive particle masses above 1 TeV, assuming a monochromatic neutrino line spectrum.

Nuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaDark matterAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesIceCubeGalactic halo0103 physical sciencesddc:530010306 general physicsAstrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsGamma-Ray EmissionHot dark matterAstronomyCosmic-Rays004Dark matter haloParticlesNeutrino detectorAnisotropyHigh Energy Physics::ExperimentHaloDwarf Spheroidal GalaxiesNeutrinoNeutrino astronomyinfo:eu-repo/classification/ddc/004
researchProduct

Constraints on the extremely-high energy cosmic neutrino flux with the IceCube 2008-2009 data

2011

We report on a search for extremely-high energy neutrinos with energies greater than $10^6$ GeV using the data taken with the IceCube detector at the South Pole. The data was collected between April 2008 and May 2009 with the half completed IceCube array. The absence of signal candidate events in the sample of 333.5 days of livetime significantly improves model independent limit from previous searches and allows to place a limit on the diffuse flux of cosmic neutrinos with an $E^{-2}$ spectrum in the energy range $2.0 \times 10^{6}$ $-$ $6.3 \times 10^{9}$ GeV to a level of $E^2 \phi \leq 3.6 \times 10^{-8}$ ${\rm GeV cm^{-2} sec^{-1}sr^{-1}}$.

Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaFluxFOS: Physical sciencesCosmic rayRaysAstrophysicsParticle detectorHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Spectrumddc:530Instrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsSPECTRUMCOSMIC cancer databaseRAYS004Massless particleNeutrino detectorPhysics and AstronomyNeutrinoAstrophysics - Instrumentation and Methods for Astrophysicsinfo:eu-repo/classification/ddc/004Astrophysics - Cosmology and Nongalactic AstrophysicsLepton
researchProduct