0000000000481013

AUTHOR

Emmanuel Wagner

showing 9 related works from this author

A cubic defining algebra for the Links–Gould polynomial

2013

Abstract We define a finite-dimensional cubic quotient of the group algebra of the braid group, endowed with a (essentially unique) Markov trace which affords the Links–Gould invariant of knots and links. We investigate several of its properties, and state several conjectures about its structure.

Essentially uniqueAlgebraMarkov chainGeneral MathematicsBraid groupGroup algebraBraid theoryInvariant (mathematics)Mathematics::Geometric TopologyQuotientMathematicsAdvances in Mathematics
researchProduct

A closed formula for the evaluation of foams

2020

International audience; We give a purely combinatorial formula for evaluating closed, decorated foams. Our evaluation gives an integral polynomial and is directly connected to an integral, equivariant version of colored Khovanov-Rozansky link homology categorifying the sl(N) link polynomial. We also provide connections to the equivariant cohomology rings of partial flag varieties.

Pure mathematicscoherent sheaveskhovanov-rozansky homology01 natural sciencesMathematics::Algebraic Topologylink homologiesMathematics::K-Theory and HomologyMathematics::Quantum Algebra[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciences[MATH]Mathematics [math]010306 general physicsMathematics::Symplectic GeometryMathematical PhysicsMathematicswebsmodel010308 nuclear & particles physicsmodulesmatrix factorizationscategoriesFoamsMathematics::Geometric TopologyTQFTknot floer homologyholomorphic disksGeometry and Topologyinvariantstangle
researchProduct

Categorical action of the extended braid group of affine type $A$

2017

Using a quiver algebra of a cyclic quiver, we construct a faithful categorical action of the extended braid group of affine type A on its bounded homotopy category of finitely generated projective modules. The algebra is trigraded and we identify the trigraded dimensions of the space of morphisms of this category with intersection numbers coming from the topological origin of the group.

[ MATH ] Mathematics [math]Pure mathematicsGeneral MathematicsCategorificationBraid groupGeometric intersection01 natural sciencesMathematics - Geometric TopologyMorphismMathematics::Category TheoryQuiverMathematics - Quantum Algebra0103 physical sciencesFOS: MathematicsQuantum Algebra (math.QA)Representation Theory (math.RT)0101 mathematics[MATH]Mathematics [math]MathematicsHomotopy categoryGroup (mathematics)Applied Mathematics010102 general mathematicsQuiverBraid groupsGeometric Topology (math.GT)16. Peace & justiceCategorificationCategorical actionBounded functionMSC: 20F36 18E30 57M99 13D99010307 mathematical physicsAffine transformationMathematics - Representation Theory
researchProduct

A cubic defining algebra for the Links-Gould polynomial

2012

We define a finite-dimensional cubic quotient of the group algebra of the braid group, endowed with a (essentially unique) Markov trace which affords the Links-Grould invariant of knots and links. We investigate several of its properties, and state several conjectures about its structure.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT][MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA][ MATH.MATH-QA ] Mathematics [math]/Quantum Algebra [math.QA]Links-Gould polynomialGeometric Topology (math.GT)braid groupMathematics::Geometric TopologyMarkov traceMathematics - Geometric Topology57M27[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]Mathematics - Quantum AlgebraFOS: Mathematics[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA]quantum invariantsQuantum Algebra (math.QA)knots and links[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]
researchProduct

On codimension two embeddings up to link-homotopy

2017

We consider knotted annuli in 4-space, called 2-string-links, which are knotted surfaces in codimension two that are naturally related, via closure operations, to both 2-links and 2-torus links. We classify 2-string-links up to link-homotopy by means of a 4-dimensional version of Milnor invariants. The key to our proof is that any 2-string link is link-homotopic to a ribbon one; this allows to use the homotopy classification obtained in the ribbon case by P. Bellingeri and the authors. Along the way, we give a Roseman-type result for immersed surfaces in 4-space. We also discuss the case of ribbon k-string links, for $k\geq 3$.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Pure mathematicsHomotopy010102 general mathematicsClosure (topology)Geometric Topology (math.GT)CodimensionMSC: 57Q45 (primary); 57M27; 57Q35 (secondary)01 natural sciencesMathematics::Geometric TopologyMathematics - Geometric Topology[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesRibbonKey (cryptography)FOS: Mathematics010307 mathematical physicsGeometry and Topology0101 mathematicsLink (knot theory)Mathematics
researchProduct

THE HOMOLOGY OF DIGRAPHS AS A GENERALIZATION OF HOCHSCHILD HOMOLOGY

2010

J. Przytycki has established a connection between the Hochschild homology of an algebra $A$ and the chromatic graph homology of a polygon graph with coefficients in $A$. In general the chromatic graph homology is not defined in the case where the coefficient ring is a non-commutative algebra. In this paper we define a new homology theory for directed graphs which takes coefficients in an arbitrary $A-A$ bimodule, for $A$ possibly non-commutative, which on polygons agrees with Hochschild homology through a range of dimensions.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]57M15 16E40 05C20Homology (mathematics)[ MATH.MATH-CO ] Mathematics [math]/Combinatorics [math.CO]Mathematics::Algebraic Topology01 natural sciencesCombinatoricsMathematics - Geometric TopologyMathematics::K-Theory and Homology[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT][MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO][ MATH.MATH-KT ] Mathematics [math]/K-Theory and Homology [math.KT]0103 physical sciencesFOS: MathematicsMathematics - CombinatoricsChromatic scale0101 mathematicsMathematics::Symplectic GeometryMathematicsAlgebra and Number TheoryHochschild homologyApplied Mathematics010102 general mathematicsGeometric Topology (math.GT)K-Theory and Homology (math.KT)Directed graphMathematics::Geometric TopologyGraphMathematics - K-Theory and HomologyPolygon[MATH.MATH-KT]Mathematics [math]/K-Theory and Homology [math.KT]BimoduleCombinatorics (math.CO)010307 mathematical physicsJournal of Algebra and Its Applications
researchProduct

Khovanov–Rozansky homology for embedded graphs

2011

Khovanov homologyCombinatoricsDiscrete mathematicsAlgebra and Number TheoryHomology (mathematics)MathematicsFundamenta Mathematicae
researchProduct

The HOMFLY-PT polynomials of sublinks and the Yokonuma–Hecke algebras

2016

We describe completely the link invariants constructed using Markov traces on the Yokonuma-Hecke algebras in terms of the linking matrix and the HOMFLYPT polynomials of sublinks.

MSC: Primary 57M27: Invariants of knots and 3-manifolds Secondary 20C08: Hecke algebras and their representations 20F36: Braid groups; Artin groups 57M25: Knots and links in $S^3$Pure mathematicsMarkov chainGeneral Mathematics010102 general mathematicsYokonuma-Hecke algebrasGeometric Topology (math.GT)Linking numbers01 natural sciencesMathematics::Geometric TopologyMatrix (mathematics)Mathematics - Geometric TopologyMarkov tracesMathematics::Quantum Algebra[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesMathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)010307 mathematical physics0101 mathematicsRepresentation Theory (math.RT)Link (knot theory)Mathematics - Representation TheoryMathematics
researchProduct

HOMFLY-PT skein module of singular links in the three-sphere

2012

For a ring R, we denote by [Formula: see text] the free R-module spanned by the isotopy classes of singular links in 𝕊3. Given two invertible elements x, t ∈ R, the HOMFLY-PT skein module of singular links in 𝕊3 (relative to the triple (R, t, x)) is the quotient of [Formula: see text] by local relations, called skein relations, that involve t and x. We compute the HOMFLY-PT skein module of singular links for any R such that (t-1 - t + x) and (t-1 - t - x) are invertible. In particular, we deduce the Conway skein module of singular links.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]HOMFFLY-PT skein modulePure mathematics01 natural scienceslaw.inventionMathematics - Geometric TopologylawMathematics::Quantum Algebra[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencessingular knot singular linkFOS: Mathematics0101 mathematicsQuotientMathematicsRing (mathematics)Algebra and Number TheorySkein010102 general mathematicsSkein relationGeometric Topology (math.GT)Mathematics::Geometric TopologyInvertible matrix57M25Isotopy010307 mathematical physics
researchProduct