6533b821fe1ef96bd127ae0a
RESEARCH PRODUCT
A cubic defining algebra for the Links-Gould polynomial
Ivan MarinEmmanuel Wagnersubject
[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT][MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA][ MATH.MATH-QA ] Mathematics [math]/Quantum Algebra [math.QA]Links-Gould polynomialGeometric Topology (math.GT)braid groupMathematics::Geometric TopologyMarkov traceMathematics - Geometric Topology57M27[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]Mathematics - Quantum AlgebraFOS: Mathematics[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA]quantum invariantsQuantum Algebra (math.QA)knots and links[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]description
We define a finite-dimensional cubic quotient of the group algebra of the braid group, endowed with a (essentially unique) Markov trace which affords the Links-Grould invariant of knots and links. We investigate several of its properties, and state several conjectures about its structure.
year | journal | country | edition | language |
---|---|---|---|---|
2012-03-27 |